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Figure 1: Our image completion algorithm automatically extracts mid-level constraints (perspective and regularity) and uses them to guide
the filling of missing regions in a semantically meaningful way. Our method is capable of completing challenging scenes such as multiple
building facades (left), strong perspective distortion (middle) and large regular repetitive structures (right). We significantly outperform three
representative state-of-the-art image completion techniques for these images (see Figure 2). Image credits (left to right): Flickr users micromegas, Theen
Moy, Nicu Buculei.

Abstract

We propose a method for automatically guiding patch-based image
completion using mid-level structural cues. Our method first esti-
mates planar projection parameters, softly segments the known re-
gion into planes, and discovers translational regularity within these
planes. This information is then converted into soft constraints for
the low-level completion algorithm by defining prior probabilities
for patch offsets and transformations. Our method handles multi-
ple planes, and in the absence of any detected planes falls back to
a baseline fronto-parallel image completion algorithm. We validate
our technique through extensive comparisons with state-of-the-art
algorithms on a variety of scenes.
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1 Introduction

Replacing or filling regions in images with plausibly synthesized
content is a common image editing operation. This task, known as
image completion, is used in applications ranging from the removal
of unwanted objects in personal photos to movie post-production.
It is also an important step in many graphics algorithms, e.g., for
generating a clean background plate or reshuffling image contents.

While much progress has been made, image completion remains a
challenging problem. This is because some amount of higher level
understanding of the scene is often required. The state-of-the-art
automatic algorithms typically rely on low-level cues; they syn-
thesize the missing region as a field of overlapping patches copied
from the known region [Wexler et al. 2007]. Here, they attempt
to synthesize an image that locally appears like the known input
everywhere, and such that overlapping patches agree as much as
possible. Barnes et al. [2009] showed how this algorithm can be
sped up using a random search and propagation scheme.

Most of these algorithms have two important limitations. First,
since they only directly copy translated patches from the input, the
performance degrades with scenes that are not fronto-parallel. They
would not be able to effectively handle the perspective foreshorten-
ing as shown in Figure 1. The other limitation is in the tendency of
converging to local minima, due to the strong non-convexity of the
objective. This second problem is somewhat alleviated by applying
the algorithm in a coarse-to-fine manner.

Recent approaches handle the fronto-parallel limitation by consid-
ering patch transformations such as rotation, scale, and gain/bias
color adjustments [Mansfield et al. 2011; Darabi et al. 2012]. While
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Figure 2: Limitations of current state-of-the-art methods. Compare these results with ours in Figure 1.

this improves the algorithm’s ability to complete general scenes, it
results in an exponential increase of the search space from 2 degrees
of freedom per output pixel up to 8 (or more). This adds many lo-
cal minima to the solution space and hence worsens the tendency
of giving rise to bad configurations. This effect can be observed
in Figures 2, 8, 9, 10 and in numerous other comparisons in the
supplementary material.

In this paper, we show how image completion can be substan-
tially improved by automatically guiding the low-level synthesis
algorithm using mid-level structural analysis of the known region.
Specifically, we estimate planar projection parameters (i.e., the lo-
cal perspective slope of the scene) as well as translational regularity
in the affine rectified domain (explained later in Section 4.1); this
information is used to constrain the search space in the missing re-
gion. These constraints are cast as a prior probability of the patch
transformation parameters. As a result, we can use an even richer
patch transformation model than previous work (i.e., full homogra-
phies) since our constraints effectively reduce this high dimensional
model to a lower degree subspace.

We handle multiple detected planes (that may be perspectively dis-
torted) by using a soft proximity-based weighting scheme and rely-
ing on the power of the low-level algorithm for finding good transi-

tions. Note that while we model the world as piecewise planar, we
are not just restricted to such scenes: just as the original comple-
tion algorithm was not limited to fronto-parallel scenes, ours allows
significant deviation from the piecewise planar model, as evidenced
by our results.

Our algorithm significantly improves performance for challenging
man-made scenes such as those of architecture and indoors. In the
absence of any detected structural cues, e.g., for most natural land-
scape images (Figure 9), our algorithm falls back to standard un-
constrained completion, i.e., our implementation of Wexler et al.’s
algorithm [2007]. We validate our method by comparing against
state-of-the-art algorithms. We show numerous representative re-
sults in the paper and supplementary material.

2 Previous Work

In this section, we review representative techniques for image com-
pletion. Image completion techniques can be roughly categorized
as diffision-based or example-based.

Diffusion-based techniques fill in small or narrow holes by propa-
gating adjacent image structures. This class of techniques is pio-



neered by Bertalmio et al. [2000] and later extended by Ballester
et al. [2001] and Bertalmio et al. [2003]. These techniques are less
effective in handling large missing regions due to their inability to
synthesize textures.

By comparison, example-based methods exploit redundancy in nat-
ural images for filling missing pixels. They are based on example-
based texture synthesis methods [Efros and Leung 1999; Efros
and Freeman 2001]. Variants of these methods include using
structure-based priority [Criminisi et al. 2004], deterministic EM-
like schemes [Kwatra et al. 2005; Wexler et al. 2007; Barnes et al.
2009], or MRF models with patches as labels, which can be solved
efficiently using belief propagation [Komodakis and Tziritas 2007]
or graph cut [Pritch et al. 2009]. These techniques still fundamen-
tally rely on low-level cues, which are less effective for images with
larger structures.

In many real scenes, the appearance can change significantly due
to local scene shape variation such as perspective distortion. As
a result, it may be difficult to synthesize plausible regions if only
translated patches are considered. Recent approaches address this
problem by increasing the motion parameter search space to simi-
larity transform with reflection and accommodate slight photomet-
ric variations [Mansfield et al. 2011; Darabi et al. 2012]. While the
additional motion parameters do help when needed, the increased
dimensionality and complexity render the nearest neighbor search-
ing algorithm even harder to find a good solution. We handle this
issue by constraining the transformation based on mid-level struc-
tural analysis of the image.

Missing regions in images could also be completed with the help
of external image datasets. Hays and Efros [2007] retrieve seman-
tically similar images from a large dataset and copy a single large
region to fill the missing pixels. A similar scene matching strategy
was adopted by Zhang et al. [2013]; the main difference is that they
transfer the self-similarity field to guide the completion instead of
the actual contents of the matched image. Another example of us-
ing external database is through instance-level matching methods
to fill in missing regions via appropriate geometric and photometric
transformation of the retrieved image [Whyte et al. 2009]. In this
work, we consider only the known region in the input image.

The notion of automatic guidance maps for image completion has
been used in a number of approaches. For example, Jia et al. [2003]
inferred the line and contour continuation in the missing regions
and used them for completion. A similar type of salient line
matching was used in problems of tele-registration [Huang et al.
2013a]. Kopf et al. [2012] used tile-based search space constraints
to constrain the source of texture examples in synthesis. He and
Sun [2012] identify a number of representative translation offsets
from the known region of the input image and use these offsets to
complete the image. However, their method detects regularity only
in the image plane, and is, thus, not very effective on larger struc-
tures with significant perspective effects.

While it is desirable to have a fully automatic approach, the image
completion technique may still fail on occasion because computer
vision techniques are typically far from perfect. Interactive methods
allows users to explicitly provide high-level expertise to guide the
completion. User-specified constraints include label map [Hertz-
mann et al. 2001], line structure continuation [Sun et al. 2005], per-
spective [Pavić et al. 2006], lattice [Liu et al. 2004], and symmetry
[Huang et al. 2013b].

3 Overview

We implemented as baseline algorithm the non-parametric opti-
mization algorithm of Wexler et al. [2007], and use random search

and propagation as in PatchMatch [Barnes et al. 2009]. We use
two types of mid-level constraints of the scene to guide the low-
level completion process: planar perspective and translational reg-
ularity. Given an image and a user-specified mask that specifies
the region (or hole) to fill, we first detect multiple planes, estimate
their perspective parameters, and determine their spatial supports
within the scene (Section 4). To determine translational regular-
ity within each plane, we perform feature matching using SIFT
features [Lowe 2004]. The positions of all matched feature pairs
are then affine rectified1 using the corresponding plane parameters.
This allows the dominant translational shifts to be easily detected
through clusters of displacement vectors in the rectified domain.

We use the detected perspective planes and the translational regu-
larity within each plane as soft constraints to guide the low-level
image completion (Section 5). We achieve this by integrating these
derived constraints as prior probabilities of the search space. The
regularity detection step provides “positional” guidance, i.e., where
the source patch should be copied from. In contrast, the plane ori-
entation constraints provide “non-positional” guidance of source
patches, i.e., how the source patch should be deformed. By incor-
porating both positional and non-positional constraints on search-
ing source patches from the known region, we show that these
two types of mid-level image analysis can significantly improve the
quality of the completed region in a semantically meaningful way.

4 Detecting Planar Surfaces and Regularity

In this section, we describe our analysis of the known image region
to detect planar surfaces (Section 4.1) and translational regularity
within these planes (Section 4.2). The results of this analysis will be
used to constrain the low-level completion algorithm, as described
in Section 5.

4.1 Planes

Many techniques have been proposed for identifying and rectify-
ing planes [Chum and Matas 2010; Zhang et al. 2012; Aiger et al.
2012], i.e., converting a perspectively distorted plane to a fronto-
parallel version. We use a technique that involves line segment ex-
traction, vanishing point estimation [Hartley and Zisserman 2004],
and grouping based on vanishing points. Since this part of our al-
gorithm is relatively standard, we provide only a brief description
here. We first detect edges and fit line segments in the known re-
gion of the image. We then detect up to three vanishing points
(VPs) using a RANSAC-based voting approach. This means we
assume there are only up to three different plane orientations in the
scene. This is reasonable for typical man-made structures. We show
a sample result in Figure 3.

Given the three VPs, we can recover up to three plane orientations,
one from each pair of the detected VPs. We compactly represent
the parameters of plane m using the vanishing line lm∞ (the image of
the line at infinity on the world plane connecting the two distinct
VPs):

lm∞ = [lm
1 , l

m
2 , l

m
3 ]
>. (1)

Note that lm∞ is homogeneous and has two degrees of freedom. The
perspective image of a plane can then be affine rectified (so that
parallel lines in 3D appear parallel in the image) using a pure per-
spective transformation matrix

Hm =

 1 0 0
0 1 0
lm
1 lm

2 lm
3

 . (2)

1Affine rectification means mapping vanishing points to infinity so that
parallel lines in 3D space project to parallel 2D lines in the rectified image.



Figure 3: Vanishing point detection from a man-made environment.
The red, green, and blue line segments correspond to three detected
vanishing points, respectively.

However, the plane parameters provide no information on the spa-
tial support of the plane in the image domain. While there are many
computer vision algorithms available for automatic single-view re-
construction of man-made environment, they are usually quite so-
phisticated, e.g., see Barinova et al.’s work [2008]. Instead, we
address this problem via a rather simple and straightforward ap-
proach.

Our key insight is that a plane typically consists of two sets of par-
allel 3D lines. In other words, there are usually two sets of the line
segments with two distinct VPs that should reside within the same
image region. We identify the support of each plane by locating
positions where the two sets of line segments corresponding to the
two VPs overlap with each other.

We first estimate the spatial support of each VP by diffusing its cor-
responding line segments using a wide Gaussian kernel. Then, we
estimate the spatial support for the planes by performing element-
wise multiplication of its VP’s support line density maps. These
product maps have a high response where the two sets of the line
segments overlapped with each other. Note that we always add the
fronto-parallel plane with parameters l0

∞ = [0,0,1]> and assign
a fixed density value 10−5 uniformly across the image. We then
perform per-pixel normalization of this density product map so that
the sum over the plane membership probability is 1; we call this the
“posterior probability” Pr[m|x] for assigning plane membership m
at pixel x. This process is illustrated in Figure 4. Here, the posterior
probability distributions are shown as color-coded density maps on
the right column (note that the density map for the fronto-parallel
plane is not shown).

As lines can only be detected in the known region of the image,
the posterior probabilities within the unknown region are highly
unreliable. To address this problem, we assign to every missing
pixel the probabilities of the closest boundary pixel. The posterior
probability map of an example image is shown in Figure 5.

4.2 Regularity Extraction

Regular and near-regular structures are ubiquitous in man-made en-
vironments as well as in many natural objects. Detection of such
regularity has been shown to be a compact means for understand-
ing scene structure. Liu et al. [2010] provide a good survey of work
in this area.

Similar to He and Sun [2012], we also detect translational regular-
ity using offsets of matched image features. However, we detect
regularity in a localized manner and in affine rectified space in or-
der to account for possibly multiple foreshortened planes. We be-

Figure 4: Plane localization in the known region using support
line segments from pairs of vanishing points. In the hole region
we assign plane probabilities in a different manner, as shown in
Figure 5.

Figure 5: Visualization of plane posterior probability in the known
region, and propagation into the hole region. The posterior prob-
abilities of the three recovered planes are shown in blue, green
and red. (Note that the fronto-parallel plane is not shown here.)
The boundary pixels between the known and unknown regions are
shown in white. In the hole region every pixel is assigned the plane
probabilities of the nearest boundary pixel.

gin with detecting standard Difference of Gaussian feature points in
the known image region and compute the SIFT descriptors for each
feature point [Lowe 2004]. We choose to extract features in the
original image rather than rectified space because the rectification
would severely distort the image for slanted planes (e.g., rectifying
the ground plane in the middle image in Figure 1 would lead to ex-
treme distortions near the horizon). We compute the two nearest
neighbors for each feature using a kd-tree. We only retain matches
whose `2 feature distances are below a threshold of 0.1.

Next, for each plane m, we extract all feature matches, where both
feature positions have a high posterior probability Pr[m|x] (defined
in Section 4.1). Specifically, we check if the product of two poste-
rior probabilities (from two detected feature positions) exceeds 0.5.

Repetitive structures in man-made environments are usually equi-
distant in 3D. However, the equal spacing is not preserved in im-
age space (and, hence, in our feature matches), due to perspective
distortion. We undo this distortion by affinely rectifying the posi-
tions of the matched feature points. The displacement of two recti-
fied feature points is now spatially invariant, and consequently, we
can detect translational repetition: if certain regular structures ex-
ist, these displacement vectors form a dense cluster in the 2D affine
rectified space. We use the mean-shift algorithm [Comaniciu and



(a) Input image

(c) Rectified space modes

(e) Rectified displacements

(b) Matched features

(d) Fronto-parallel modes

(f) Fronto-parallel
displacements

Figure 6: Detecting regularity from modes of displacement vec-
tors between matched features. (a) and (b) show the input image
and matched features. (c) and (e) (on the left) show the detected
modes and a visualization of candidate source patch locations and
shapes for a single target patch (in white) in the affine rectified
space. The repetitive structure is clearly revealed. (d) and (f) show
the corresponding illustrations for the fronto-parallel space. Here,
the displacements are scattered and do not reveal any structure.

Meer 2002] to detect these modes (setting the bandwidth parame-
ter to 10 pixels, and rejecting spurious modes with fewer than 10
members). We denote the set of the modes as Dm = {di}, where
di ∈ R2 is the displacement vector in the rectified space.

Figure 6 (c-d) shows detected modes in both rectified (left) and
axis-aligned space (right). In (e-f) we also show their positions
relative to a target patch in the image (white square). This figure
highlights the importance of having perspective correction in com-
puting the displacement vectors. In addition to the accurate posi-
tion suggestion, the plane parameters explicitly provides how the
source patches should deform spatially. The recovered candidates,
outlined in blue, have to be significantly deformed to match with the
image axis aligned target patch, in white. It is difficult to recover
such geometric transformations using low-level algorithms alone.

He and Sun [2012] have shown that regularity using statistics of
matched patch offsets can be helpful in the context of image com-

pletion. However, they assume global translational regularity in the
image plane, i.e., they assume a single fronto-parallel surface. De-
tection and optimization are both done in image space. For our
technique, while the detection is in rectified affine space, the objec-
tive function is optimized in image space using constrained homo-
graphies (as described in the next section).

Our regularity detection handles more general scenes because we
deal with each plane independently (but with soft membership). As
a result, we are able to detect different repetitive structures on mul-
tiple building facades with different orientations. Given the major
differences, He and Sun’s technique will have to be substantially
modified to work on such scenes.

5 Guided Image Completion

In this section, we describe how the detected planes and extracted
regularity from the previous section are used to guide the low-level
image completion algorithm. We build on Wexler et al.’s algo-
rithm [2007] using random search and propagation as in Patch-
Match [Barnes et al. 2009]. Please refer to these papers for details
on the base algorithm.

We incorporate sampling from planes by modifying the patch dis-
tance function (Sections 5.1-5.3), and the regularity by modifying
the random sample generation (Section 5.4).

5.1 Objective Function

We augment the image completion objective function in two ways:
First, we augment the patch distance (called “coherence measure”
in the original paper [2007]) by including a guidance term. Second,
we augment the search space by the plane index, which determines
the patch transformation.

The objective function takes the form

min
{ti,si,mi}

∑
i∈Ω

Ecolor(si, ti,mi)+Eguide(si, ti,mi), (3)

where Ω and Ω are the sets of known and unknown pixel in-
dices, ti = (tx

i , t
y
i )
> is the center position of a target patch in Ω,

si = (sx
i ,s

y
i )
> is the center position of the corresponding source

patch in Ω, and mi the plane index of an unknown target patch ti.
The two terms Ecolor and Eguide are the appearance and guidance
terms, respectively, which together make up the patch distance.

Note that the target patches are image-aligned with no geometric
transformation such as scaling or rotation, while the source patches
have a geometric transform that is implicitly derived from geometry
of the plane they are sampled from. The geometric transform is
described in the next section.

5.2 Appearance Cost

Our appearance cost is the sum of the absolute values of two sam-
pled patches in the RGB space:

Ecolor(si, ti,mi) =
∥∥q(si, ti,mi)− p(ti)

∥∥
1, (4)

where p(ti) denotes the 7×7 patch sampled around the center posi-
tion ti and q(si, ti,mi) denotes the sampled patch centered at si with
geometric transformation subject to the plane orientation defined by
target patch position ti and the plane parameter of plane mi.

Most prior approaches use pure translational patches [Wexler et al.
2007; Komodakis and Tziritas 2007] or explicitly search geometric
transformations, e.g., rotation, scale, and flip [Mansfield et al. 2011;



Darabi et al. 2012]. Instead, we sample patches using homogra-
phies. Rather than searching for all parameters of the homography,
we derive it implicitly from the combination of the coordinates si, ti
with their corresponding plane index mi.

We first compute the transformation that maps a 7× 7 patch at ti
to transformed patch sampled at si. Let t̃i = [tx

i , t
y
i ,1]

> and s̃i =

[sx
i ,s

y
i ,1]

> as homogenous representations of ti and si, respectively.
Let h1,h2,h3 be the row vectors of Hmi . The source and target
patch positions in the affine rectified space are computed as:

t̃i
′
=
[
h1 t̃i, h2 t̃i, h3 t̃i

]>
, (5)

s̃i
′ = [h1s̃i, h2s̃i, h3s̃i]

> . (6)

We define (dx,dy) as the displacement vector from target to source
patch positions in the rectified space. The term s̃i is represented as

s̃i
′ =

h1 +h3dx

h2 +h3dy

h3

 t̃i. (7)

By applying the inverse of the rectifying matrix H−1
mi

, we have

s̃i = H−1
mi

s̃i
′ = H−1

mi

h1 +h3dx

h2 +h3dy

h3

 t̃i. (8)

To get the motion parameters of the patch around si (i.e., factoring
out the dependency of ti), we apply a translation matrix with offset
ti:

s̃i = H−1
mi

h1 +h3dx

h2 +h3dy

h3

1 0 tx
i

0 1 ty
i

0 0 1

0
0
1

= Tsi

0
0
1

 , (9)

where Tsi compactly represents the domain transformation of the
sampled source patch. Note that in the special case of fronto-
parallel plane (H0 = I3), Tsi reduces to a translation matrix with
offset (sx

i ,s
y
i ).

5.3 Guidance Cost

Our guidance cost includes three constraints derived from the anal-
ysis stage:

Eguide(si, ti,mi) = λ1Eplane(si, ti,mi)+λ2Edirection(si, ti,mi)+

λ3Eproximity(si, ti),
(10)

where λ1 = 10, λ2 = 103, and λ3 = 1 are the weighting parameters
for plane compatibility, orthogonal direction, and proximity cost,
respectively. Next, we describe each of these constraints in detail.

Plane compatibility. In the analysis stage, we computed the pos-
terior probability map Pr[mi|x] for assigning plane membership mi
for position located at x. We directly convert this into a penalty
term using the negative log-likelihood. Specifically,

Eplane(si, ti,mi) =− logPr[mi|si]− logPr[mi|ti], (11)

i.e., the term encourages sampling from a plane that has a high prob-
ability both in the source and target location.

Figure 7: Visualization of the directional cost given a target patch
(shown in white). The dark regions indicate lower costs. The di-
rectional cost encourage to find matches along the two dominant,
orthogonal directions, leading to semantically more plausible com-
pletion results.

Orthogonal direction cost. Urban scenes often consist of repet-
itive structures along horizontal and vertical directions, e.g., win-
dows on a building facade. This term encourages using source
patches located on either one of the orthogonal directions. Note
that affine rectification makes the support lines for each VP parallel,
however, the lines from the two VPs are not necessarily orthogonal
to each other. We estimate the rotation angle that maps the set of
line segments for each VP to align with the horizontal axis. This
mapping is denoted as H1

mi
and H2

mi
for the two VPs defining the

plane mi:

H j
mi =

cos(θ j) −sin(θ j) 0
sin(θ j) cos(θ j) 0

lmi
1 lmi

2 lmi
3

 . (12)

We define the orthogonal direction cost as a truncated L1-norm:

Edirection(si, ti,mi) = ψ
(

min(|H1
mi
(s̃i)

y−H1
mi
(t̃i)

y|,

|H2
mi
(s̃i)

y−H2
mi
(t̃i)

y|)
)
,

(13)

where ψ(z) = min(|z|,c) is the function that caps the cost to a con-
stant c = 0.02. To ensure that the cost is invariant to the scale of
the image, we divide the distances in y-axis in the rectified space
by the largest image dimension. For cases of target patches with no
available source samples on the both directions, this constraint has
no effect on searching of the source patch because it is constant.

Proximity cost. It has been shown by Kopf et al. [2012] that
constraining the search space to nearby regions can improve the
synthesis result. In addition to the above mid-level constraints,
we also introduce a low-level search space constraint which favors
nearby source patches for completion. This constraint implicitly
avoid copying patches from extremely different scales. We define
the proximity cost as

Eproximity(si, ti) =
||si− ti||22

σd(ti)2 +σ2
c
, (14)

where σd(ti)
2 is the squared distance of target position to the near-

est border to the known region and σ2
c = (W/8)2 is the parame-

ter for adjusting the strength of the proximity constraint (W is the
largest image dimension).

5.4 Structure Guided Sampling and Propagation

We extend the random location sampling in the PatchMatch algo-
rithm [Barnes et al. 2009] to incorporate our computed plane prob-
abilities and translational regularity. In addition to the regular ran-
dom location sampling, we also sample from the clustered regular-
ity modes computed in Section 4.2. We did not include the regular-
ity as a prior term in the previous sections because the detection is



sometimes not reliable. Using regularity instead for random loca-
tion sample generation provides a more robust way of incorporating
this constraint. In our implementation of PatchMatch, we use 5 iter-
ations of plane probability guided sampling and regularity guided
sampling (as described below) in the search and propagation stage.

Plane probability guided sampling. For a given target patch
ti, we first sample the plane index mi according to the posterior
probability Pr[mi|ti]. Then, we sample si by drawing random sam-
ples from Pr[si|mi] using rejection sampling. This effectively biases
the search space toward finding the correct patches from the same
plane.

Regularity guided sampling. While the plane probability
guided random sampling scheme to sample from the right plane, it
does not impose constraints on where on the plane it should sample
from. This usually leads to visible artifacts when regular structures
are present. Sampling from our detected regularity modes alleviates
this problem.

For each target patch ti, we first draw a plane index mi as above,
then, we randomly draw one displacement in rectified space from
Dm. Using the target patch position ti, the plane index mi, and the
displacement in the rectified space, we can then directly compute
the candidate positions and their geometric transformations. Ex-
amples of candidate source patches are shown in Figure 6. This
regularity guided sampling scheme greatly improves the comple-
tion quality when repetitive structures exist.

6 Results

We compare our results against several state-of-the-art image com-
pletion algorithms. Specifically, we choose Photoshop Content
Aware Fill [Barnes et al. 2009; Wexler et al. 2007], He and Sun’s
method [2012], and Image Melding [Darabi et al. 2012]. In the sup-
plementary material we also compare against Priority Belief Prop-
agation [Komodakis and Tziritas 2007] and GIMP Resynthesizer2.
All of these methods use fronto-parallel translational patches, ex-
cept Image Melding, which allows similarity transformation and
flip of patches.

6.1 Comparison with the State-of-the-Art Methods

In Figure 8, we show a series of comparisons on challenging scenes.
In the first row, the building consist of near regular structures. We
can see that the competing algorithms fail to synthesize such large
structure because they only minimize localized texture energy with-
out considering a global consistency. Our method, on the other
hand, fills in the hole with repetitive pattern similar to the known
region. In addition, with the recovered plane orientation, our syn-
thesized result is physically plausible.

In the second row, we show a single planar building facade with
regular patterns. Even with only mild perspective distortion, trans-
lational patches are insufficient to synthesize the foreshortening ef-
fect and thus result in broken line structures. Image Melding, while
theoretically equipped with the ability to apply appropriate scal-
ing of the patches, fails to find such solution in high-dimensional
space. Our algorithm effectively use the plane constraint to extend
the facade with minimally visible artifacts. The results on the 3rd to
6th rows show that our algorithm is not limited to ideal piecewise
plane scenes with homogeneous textures. With the plane support
detection and the weighting scheme, we leverage the low-level al-
gorithm to find a good transition boundary between one structure

2http://www.logarithmic.net/pfh/resynthesizer

and another. Examples illustrating good transition boundaries are
the stairs regions and the pure texture region around the tree in the
fourth row, and multiple unknown surface discontinuity in the fifth
row. In the last row, we demonstrate the effectiveness of combining
plane constraints and regularity-guided sampling.

From these examples of realistic scenes, we can see that our image
completion algorithm is robust to deviations from perfectly textured
planar surfaces. In other words, our completion algorithm does not
require perfect plane orientation recovery, support estimation, seg-
mentation, and symmetry detection. In fact, the analysis in many
regions contains errors because vision algorithms are far from per-
fect. However, as exemplified here, by combining a powerful low-
level algorithm with mid-level constraints, we are able to extend
the state-of-the-art in image completion. Please refer to the supple-
mentary materials where we show extensive comparison results on
a variety of scenes.

6.2 Comparisons on Natural Scenes

For images of natural scenes our analysis usually does not detect
any planes because there are no reliable features to detect planes
and translational regularity. In such cases our our algorithm auto-
matically reverts to the baseline image completion algorithm, i.e.,
our implementation of Wexler et al.’s algorithm [2007]. Four such
examples are shown in Figure 9. We compare to the unguided ver-
sion of our completion algorithm (fourth column) to validate that
our result looks visually similar to the baseline. In the supplemen-
tary material we present a more extensive comparison on 25 natural
images we extracted from the project website of Kopf et al.’s pa-
per [2012].

6.3 Failure Modes

We used relatively simple algorithms in our image analysis stages,
which can fail to detect vanishing points or plane regularities, or
more severely, return false positives. In the former case our algo-
rithm just reverts to fronto-parallel completion, while the latter case
might lead to some artifacts. The performance of the analysis stage
could likely be improved using more sophisticated computer vision
methods, which we leave to future work.

The first two rows in Figure 10 demonstrate demonstrate the dif-
ficulty of finding demarcation lines between different perspective
planes when the unknown region is large. The results in the third
row shows an example that the falsely detected plane may over-
constrain the patch synthesis and lead to poor results near the
bushes. Notice, though, that the competing techniques also fail to
generate satisfactory results.

7 Concluding Remarks

We have presented an automatic image completion algorithm that
exploits extracted mid-level scene structures for guiding the low-
level completion. Our algorithm detects multiple planes and their
corresponding translational regularity. These constraints are in-
corporated into the augmented patch distance and the sampling
scheme. In the absence of reliable plane detection, our algo-
rithm automatically reverts to a baseline completion algorithm. We
demonstrated that our method consistently outperforms state-of-
the-art image completion algorithms for a wide range of challeng-
ing scenes.

Historically, conventional statistical texture synthesis methods for-
mulate texture synthesis as an “analysis then synthesis” framework.
However, this type of framework has been mostly set aside due to
the simplicity and the effectiveness of example-based methods. Our

http://www.logarithmic.net/pfh/resynthesizer


Input & hole Photoshop Image Melding [2012] [He and Sun 2012] Our result

Figure 8: Comparisons with representative state-of-the art algorithms. Please refer to the supplementary material for a more extensive
comparison on over 80 images and against a wider selection of existing algorithms. Image credits: Flickr users Daniel Foster, Moyan Brenn, Savannah
Roberts, Remon Rijper, Chris Ford, and marie-ll.
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Figure 9: Image completion on images of natural scenes.

Input & hole Photoshop Image Melding [2012] [He and Sun 2012] Our result

Figure 10: Failure examples. First two rows: our algorithm has difficulty in finding the good demarcation lines when the missing regions
are too large. The last row: our method may overconstrain the patch synthesis with falsely-detected planes, which leads to artifacts near the
bushes. Image credits: Flickr users Reto Fetz, David Barrie, and brokenthoughts.



method demonstrates the benefit and the need of image analysis.
We show that the quality of image completion can be significantly
improved by striking a balance between analysis and synthesis.
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