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Figure 1. 3D Photo Creation. Runtime measured on iPhone X.

Abstract

We present the algorithmic choices that went into the cre-
ation and presentation of 3D Photos, a new medium viewed
by millions of people. 3D Photos leverage a variety of mod-
ern computer vision and computer graphics technologies to
efficiently process image+depth pairs to produce a compact
and easy to share result. They exhibit parallax through vir-
tual camera motion that is mapped to scrolling and/or de-
vice motion. In VR 3D Photos are rendered in stereo and
respond to head motion. They are currently the only easily
captured user-generated-content in VR.

1. Introduction

Traditional 2D photography lets us capture, with a single
click, the world around us as an instant frozen in time. 3D
photography is a new way to make these captured moments
come back alive: Although still static in time, 3D photos
can be interactively explored by changing the viewpoint af-
ter the fact to more fully relive the moment. The ability to
change viewpoint is possible on mobile devices, but enables
even more life-like experiences in Virtual Reality, by facili-

tating stereo viewing with head-motion induced parallax.
However, capturing and displaying 3D photos poses

challenges that are not present in 2D photography: in addi-
tion to color, depth per pixel is required, viewpoint changes
reveal previously occluded parts of the scene which must
be filled, and the affordances for changing viewpoint must
be developed. Depth is now possible to acquire from multi-
camera devices, however, accurately filling hidden content
requires multiple captured views [3, 13]. This is difficult
from a technical, and most importantly, from a practical
standpoint: capturing multiple angles goes beyond the ef-
fort that most people are willing to spend on a photograph.
Viewing 3D photos also requires an intuitive connection be-
tween the viewer and the media.

We present a practical approach to 3D photography,
specifically we address five design objectives:

Effort: the capture should occur in a single shot and not
require any special hardware. This effectively restricts
us to capturing with mobile phone cameras.

Speed: all post-capture processing should at most take
a second or two (on the mobile device) before the 3D
photo can be viewed and shared.

Compactness: the final representation should be easy to
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transmit and display on low-end devices.

Quality: depth discontinuities, and disocclusions should
be handled well.

Intuitive Interaction: interactive viewing a 3D Photos re-
quires should be both engaging and natural requiring no
learning.

We built a practical implementation that satisfies these
objectives and has been used to create more than 10 million
3D photos by end-users.

We leverage dual camera cell phones to capture color and
depth image pairs. While the second image enables high
quality stereo depth estimation, it does not help much with
disocclusions because of the narrow camera baseline. We
designed heuristic algorithms to detect major depth discon-
tinuities, hallucinate occluded geometry, and inpaint colors
on the newly formed geometry smoothly.

Our algorithms operate on a Layered Depth Image (LDI)
representation [10], which is sparse (only stores structures
that are really present in the scene), and provides inher-
ent level- of-detail (nearby features are represented more
densely than far ones), and can be converted into a compact
textured mesh representation for transmission and render-
ing.

Our 3D Photos are received and consumed within the
Facebook app on both iOS and Android devices as well
as the Facebook website in a browser. They can also be
consumed using a VR headset using a browser that sup-
ports WebVR, such as Oculus Browser on an Oculus Go or
GearVR, or Firefox on a PC with an Oculus Rift. Each con-
sumption platform has slightly different affordances (e.g.,
scrolling, gyro tracking, head motion) for consumption as
described later.

2. Previous Work
The classic way to create 3D “tours into the picture” in-

volves carefully annotating the depth of a picture manually,
or semi-manually with the help of tools [5, 9].

More recent methods employ learning-based methods to
estimate depth [6] and hallucinate novel views [2, 11, 1].
This is sometimes even done on-the-fly during rendering
[7, 8]. A major advantage of “neural” re-rendering is that
it does not require any pre-processing. However, it needs
strong hardware at runtime to perform the network infer-
ence in real-time. Networks are often also only trained for
specific scenes, and these methods do not guarantee that dis-
occlusions are filled consistency from different viewing an-
gles.

Stereo Magnification [12] synthesizes a multi-plane rep-
resentation from the small-baseline stereo pair. It has the
ability to hallucinate texture and structures in disocclusions,
but the representation produces artifacts on sloped surfaces,

and is, due to the excessive redundancy, memory and stor-
age inefficient.

Our work leverages Layered Depth Images [10], similar
to recent work [3, 4], but we are using more sophisticated
heuristics for inpainting occlusions, and optimized the algo-
rithms to perform end-to-end within 1-2 seconds on mobile
devices.

3. 3D Photo Construction
The input to our algorithm is a color and depth image

pair, typically captured with a dual camera cell phone. (We
briefly discuss ways to derive depth from monocular im-
agery in future work.) Our processing algorithm consists of
four stages, describes briefly for this extended abstract:

1. Pre-processing: We start by normalizing the depth
range of the image, so each scene induces the same amount
of screen-space parallax, independent of its real-life scale.
Discontinuities in the depth map are the most salient fea-
ture, since they result in disocclusions when viewing. How-
ever, they are typically represented as soft edges in the depth
map that spread over multiple pixels. We use image filters
to clean the depth maps up and turn discontinuities into step
edges that are precisely aligned with image edges, and re-
duce small scale features that would be difficult to represent
faithfully.

2. Disocclusion: We next lift the depth map onto a LDI,
at this point with just a single layer everywhere. We con-
nect every pixel to its cardinal (left, right, top, bottom)
neighbors, except across discontinuities. Then, we itera-
tively extend the backside discontinuities into the occluded
region using a diffusion-based inpainting algorithm. We
employ linear constraints to ensure that curve-like disoc-
clusions continue straight into the occluded region. Iterative
isotropic diffusion inpaints colors into the occluded regions.
This algorithm is very fast and produces predictable, albeit
smooth, results. (We also touch on future efforts later.)

3. Texture atlas: The next step is to decompose the LDI
into a set of non-overlapping charts that can be packed into
a texture atlas (Figure 1c). We use a seed and grow algo-
rithm to produce these charts. Charts are padded for texture
filtering.

4. Mesh generation: Finally, we convert the LDI geome-
try into a textured mesh. Since general mesh simplification
algorithms are slow, we designed a custom algorithm that
operates in the texture atlas domain and exploits the 2.5D
nature of our data. We first simplify the chart boundaries
into poly-lines. Then, we add evenly distributed interior
points to capture internal depth variation. Finally, we gen-
erate a triangle mesh for each chart by converting it into a
set of Y-monotone polygons and triangulating them inde-
pendently. The result is represented as a glTF file for trans-
mission.



Figure 2. Rotating phone induces parallax.

Discussion: Our algorithm has been designed with per-
formance in mind. This table summarizes the runtime on an
iPhone X:

Pre-processing 100ms
Geometry inpainting 600ms
Color inpainting 500ms
Texture atlas generation 500ms
Mesh generation 100ms
Total 1800ms

4. 3D Photo Viewing
Without motion, a 3D Photo is just a 2D Photo. Fully ex-

periencing the 3D format requires moving the virtual view-
point to recreate the parallax one would see in the real
world. We have designed interfaces for both Mobile de-
vices and fixed browsers, as well as for heads-up viewing in
VR where we also leverage stereo viewing.

1. Mobile and Browser:
On mobile devices there a number of possible affor-

dances that can be mapped to virtual camera motion. These
include scrolling in the application interface, IMUs such as
the gyros to detect rotation, as well as finger touches.

After considerable user testing we finally ended up map-
ping scrolling behavior to both vertical rotation (about the
horizontal axis) as well as dolling in and out (translation
along the ”z” axis). This gives the illusion during scrolling
the imagery from above to below, of the viewing point start-
ing from below moving to above while simultaneously mov-
ing closer to the scene. We also added a small bit of hori-
zontal rotation (about the vertical axis) mapped to scrolling.
Although all rotation could be mapped to rotations of the
device detected by the gyros, we found only mapping hor-
izontal rotation to gyro motion to be most effective (Fig-
ure 2). In a web browser we substitute mouse motion for
gyro rotation.

2. In Virtual Reality:
In VR, we have the additional advantage of being able to

produce two offset images for each eye to produce stereo.
This creates a significant feeling of immersion. 3D Pho-

tos are the only general immersive user-generated-content
in VR.

We use threeJS (a Javascript 3D library) to render the
scene to a WebGL context, and we use WebVR to render
this context to a VR Device. The renderer queries the device
parameters (eye buffer size and transforms), applying the
information separately for the left and right eye views to
produce a stereo image.

In addition to stereo we map head motion directly to vir-
tual camera motion. In 6-DOF headsets, this is a one-to-one
mapping. In 3-DOF (rotation only) we mimic head trans-
lation from rotation since rotating the head to the left, for
example, also translates the eyes leftward.

One issue we solve is creating the model with limited
absolute depth information. To minimize holes appearing in
the model we create a frame around the model and constrain
the viewing angles. The result appears like a 3D model pop-
ping out of a 2D frame.

5. Conclusions and Future Work
There are three key areas where we expect to apply learn-

ing algorithms to 3D Photo construction: predicting depth
from monocular imagery, replace all heuristics, and hidden
texture and structure in-painting.

By presenting a photographer with the means to capture
a new type of media with no new effort beyond pressing a
shutter button, and providing consumers intuitive interfaces
for viewing 3D Photos, we have brought a new medium to
millions of people by leveraging and enhancing both com-
puter vision and computer graphics techniques.
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