
ACM Reference Format
Kopf, J. 2016. 360̊ Video Stabilization. ACM Trans. Graph. 35, 6, Article 195 (November 2016), 9 pages.
DOI = 10.1145/2980179.2982405 http://doi.acm.org/10.1145/2980179.2982405.

360◦◦◦ Video Stabilization

Johannes Kopf
Facebook

(a) Hand-held
360◦ cameras

(b) Full-spherical 360◦×180◦ video (c) Original motion
tracks

(d) Pure rotation
stabilization

(e) Deformed
rotation stabilization

Figure 1: Thanks to new 360◦ cameras (a) recording 360◦ videos (b) is now fairly accessible to casual users. However, it is not easy to avoid
shake with hand-held cameras (c). We present a new 360◦ video stabilization algorithm that first removes rotational motion (d), and further
optimizes a flexible deformable model to remove even residual shake from translational motion, parallax, and rolling shutter wobble (e).

Abstract

We present a hybrid 3D-2D algorithm for stabilizing 360◦ video
using a deformable rotation motion model. Our algorithm uses 3D
analysis to estimate the rotation between key frames that are appro-
priately spaced such that the right amount of motion has occurred
to make that operation reliable. For the remaining frames, it uses
2D optimization to maximize the visual smoothness of feature point
trajectories. A new low-dimensional flexible deformed rotation mo-
tion model enables handling small translational jitter, parallax, lens
deformation, and rolling shutter wobble. Our 3D-2D architecture
achieves better robustness, speed, and smoothing ability than either
pure 2D or 3D methods can provide. Stabilizing a video with our
method takes less time than playing it at normal speed. The results
are sufficiently smooth to be played back at high speed-up factors;
for this purpose we present a simple 360◦ hyperlapse algorithm that
remaps the video frame time stamps to balance the apparent camera
velocity.

Keywords: 360 video, video stabilization

Concepts: •Computing methodologies→ Computational photog-
raphy;

1 Introduction

Throughout the last century of film, we have viewed the world
through a narrowly cropped view. Full-spherical 360◦×180◦ video
provides a means to break the frame and generate a completely im-
mersive experience that transports the viewer to another world and
allows her to examine all directions at once. We call this medium
“360◦ video” for short. 360◦ video is particularly suitable for live
action such as action sports (Figure 1b), since no angle is cropped in

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). © 2016 Copyright held by the owner/author(s).
SA ’16 Technical Papers, December 05-08, 2016, , Macao
ISBN: 978-1-4503-4514-9/16/12
DOI: http://dx.doi.org/10.1145/2980179.2982405

the recording. Viewers can pan and rotate a 360◦ video’s perspec-
tive to watch it from different angles by dragging with the mouse
or finger on a computer or mobile device, or by watching the video
with a VR headset.

The level of industry support for the 360◦ medium has dramati-
cally increased in the last year or two. Google and Facebook re-
cently added support for 360◦ to their video sharing platforms and
released reference camera designs12 for professional content pro-
ducers. Numerous consumer-level 360◦ cameras have just recently
become available or will be released later this year (Figure 1a).

While recording and sharing 360◦ video is now fairly accessible
for consumers, making it look good is not so simple. Casual 360◦
videos taken with a hand-held camera often look shaky (Figure 1c),
and the individual frames are geometrically distorted by rolling
shutter wobble. Shake in 360◦ video is particularly severe because
it can cause discomfort (“cybersickness”) when watched using VR
headsets [Kennedy et al. 2010]. In this paper, we present a 360◦
video stabilization algorithm that can dramatically reduce shake
and rolling shutter distortions in 360◦ videos.

Most existing video stabilization algorithms are designed specif-
ically for narrow field-of-view video and use 2D motion models.
Early work used low-dimensional similarity or homography trans-
formations [Morimoto and Chellappa 1998]; however, these simple
models cannot handle parallax. More recent work switched to more
flexible models, such as mesh warps [Liu et al. 2011; Goldstein and
Fattal 2012; Liu et al. 2013] or smoothed flow fields [Liu et al.
2014]. Unfortunately, this introduces the challenge of constraining
the extra dimensions to avoid producing new geometric deforma-
tions to the processed video, which is the main focus of these pa-
pers. Many of these constraints, however, do not translate easily to
the spherical wrap-around domain in 360◦ video (Section 2).

Another category of algorithms reconstructs a 3D model of the cam-
era trajectory and scene geometry, and reason about the stabilized
video in terms of 3D quantities [Buehler et al. 2001; Bhat et al.
2007; Liu et al. 2009; Kopf et al. 2014]. However, performing a
full 3D reconstruction is a complex process, slow in practice, and

1https://www.google.com/get/cardboard/jump
2https://facebook360.fb.com/facebook-surround-360

ACM Trans. Graph., Vol. 35, No. 6, Article 195, Publication Date: November 2016

http://dx.doi.org/10.1145/2980179.2982405
https://www.google.com/get/cardboard/jump
https://facebook360.fb.com/facebook-surround-360

not robust under certain situations such as the absence of transla-
tional motion.

The method we propose in this paper is a hybrid 3D-2D algorithm.
We use a new deformed-rotation motion model to undo shake in
the video. Slight deviations from a pure rotation allow handling
some degree of translational motion, parallax, lens deformations,
and rolling shutter wobble. Like most stabilization algorithms, we
track feature points and perform stabilization in terms of these ac-
cumulated trajectories. We use a robust 3D analysis to estimate
the true relative rotations between appropriately spaced apart key
frames. For the inner frames, we switch to a 2D optimization that
maximizes the smoothness of the feature point trajectories using the
new deformed-rotation motion model to account for above men-
tioned deviations from pure rotations. We optionally re-apply a
smoothed version of the estimated rotations to preserve the origi-
nal video orientation (but without fast jitter).

The new algorithm architecture described above has several advan-
tages. The rotation compensation is accurate because it uses 3D
analysis, so it can distinguish rotational and translational motion.
The 3D reconstruction is robust because it is applied to carefully
spaced key frames, and estimates only the rotational component
while ignoring translation. The fixed rotation-compensated key
frames provide a regularizing backbone for the 2D optimization.
The resulting algorithm is extremely fast: stabilizing a video takes
less time than playing it at normal speed.

Our stabilized results are sufficiently smooth to be played back at
high speed-up factors. For this purpose we present a simple 360◦
hyperlapse algorithm that estimates the apparent camera velocity
from the after-stabilization motion vectors in the input video, and
then remaps the video frames temporally to balance the output cam-
era velocity.

We compare our hybrid algorithm to pure 2D and 3D variants and
analyze the effect of our stabilization on video bitrate. We achieve
between 10%-20% bitrate reduction for near lossless compression
that relies on the client to apply the inverse of the stabilization trans-
formation. We demonstrate our algorithm on a range of challenging
example videos. Please refer to the supplementary material for full
results.

2 Previous Work

2.1 360◦◦◦ Video

360◦ videos are shot with an omnidirectional camera, or stitched
from a collection of cameras. While we show most 360◦ imagery
in equirectangular projection throughout this paper (since it shows
all 360◦×180◦ angles at once), they are usually transformed for the
output display into a perspective viewport with lower-field-of-view.

When watching a 360◦ video on a mobile device, the viewing angle
is changed by dragging the finger across the screen or by tilting the
device as if it is a portal into the scene captured in the 360◦ video.
On a computer, the mouse can be used to navigate the video. 360◦
videos can also be watched “in VR” with devices such as a Samsung
GearVR or Google Card Board.

2.2 Video Stabilization

Video Stabilization is a topic that has been intensely studied in the
past one or two decades. Almost all methods specialize on narrow
field-of-view videos. Generally, algorithms track incremental mo-
tion, fit a parametric or non-parametric motion model, smooth the
model, and then crop and warp the final pixels.

Most of the algorithms do not extend easily to the spherical wrap-
around domain in 360◦ video. For example, most algorithms em-
ploy Content-Preserving Warps [Liu et al. 2009] to produce the out-
put frame. While this algorithm has an elegant linear solution in
the planar domain it becomes non-linear on the sphere, which has
consequences for robustness and performance (i.e., temporal con-
straints have to be added to prevent jumping between different local
minima in adjacent frames).

Video stabilization algorithms can be categorized into ones that rea-
son about the model fitting and smoothing in 2D or 3D. Our pro-
posed algorithm combines elements from both of these kinds of
video stabilization.

2D Stabilization These algorithms fit and smooth 2D motion
models. The earliest examples use low-dimensional models such
as similarity or homography transformations [Morimoto and Chel-
lappa 1998], but these cannot represent parallax. Simple models
are still frequently used in modern approaches [Grundmann et al.
2011], though, due to their robustness. More recent methods tend
to use more flexible motion models, such as Content-Preserving
Warps [Liu et al. 2009]. However, these flexible motion models
have to be carefully constrained to prevent overfitting and intro-
duction of new wobble artifacts. Liu et al. [2011] smooth fea-
ture point trajectories in a low-dimensional subspace. Goldstein
and Fattal [2012] use epipolar constraints. Liu et al. [2013] divide
the video frame into a 4× 4 grid and fit homographies with regu-
larization constraints. The Steadyflow algorithm [Liu et al. 2014]
achieves strong stabilization by smoothing dense optical flow fields.

3D Stabilization Some algorithms build 3D scene models to per-
form stabilization [Buehler et al. 2001; Bhat et al. 2007; Liu et al.
2009; Kopf et al. 2014]. Generally, these algorithms have higher
smoothing ability, since they use a more accurate model. However,
in practice 3D reconstruction is often less robust than 2D methods.
It can break down in the absence of translational motion or in the
presence of rolling shutter artifacts. 3D methods are typically much
slower than 2D methods.

360◦◦◦ Video Stabilization The “Jack-In Head” system [Kasahara
et al. 2015] (an earlier version of the system was called “Live-
Sphere”) estimates relative rotation between adjacent video frames
for stabilization. Because adjacent frames are very similar it is diffi-
cult for the algorithm to distinguish small translations and rotations;
error accumulation results in less smooth results than we achieve
with our hybrid 3D-2D algorithm that estimates rotation (more ro-
bustly) between spaced key frames and optimizes smoothness of the
in-between frames. We compare against this kind of stabilization in
Section 5.3.

Kamali et al. [2011] describe an omnidirectional structure-from-
motion algorithm and a 3D stabilization algorithm similar to Liu
et al. [2009]. It shares the limitations of 3D stabilizers for narrow
field-of-view videos described above.

There exists at least one commercial 360◦ stabilization algorithm3.
However, it only accepts unstitched GoPro footage as input, and it
is not clear what algorithm is used.

3 360◦◦◦ Video Stabilization

In this section, we describe our basic algorithm for stabilizing 360◦
videos. We start by tracking the motion of feature points in the
video (Section 3.1). The stabilization algorithm then operates en-
tirely on these trajectories. We propose a hybrid 3D-2D algorithm

3Autopano Video http://www.kolor.com/autopano-video

195:2 • J. Kopf

ACM Trans. Graph., Vol. 35, No. 6, Article 195, Publication Date: November 2016

http://www.kolor.com/autopano-video

(a) Key frame rotation estimation

(b) De-rotate key frames, initialize inner frames.

(c) 2D optimization for inner frames.

Figure 2: Overview of our algorithm. The graphs plot rotation
(vertical axis, only one degree of freedom shown) over time (hor-
izontal axis). (a) We first estimate the rotations of the key frames
(black dots) using 3D analysis (Section 3.2), (b) then apply the in-
verse transformation to undo the key frame rotations, and interpo-
late the adjustment across the inner frames. (c) Finally, we min-
imize the inner frame rotations using 2D optimization that fits a
deformed rotation motion model (Sections 3.3-3.4).

architecture. The 3D reasoning estimates the relative rotations of
appropriately spaced key frames (Section 3.2, Figure 2a). We then
undo the relative rotation between the key frames and interpolate
the adjustment for the inner frames (Figure 2b). Finally, we switch
to 2D optimization of the inner frame rotations to maximize the
smoothness of the stabilized feature point trajectories (Section 3.3,
Figure 2c). Our motion model allows slight deviation from pure
rotation at inner frames to account for residual jitter from parallax
and rolling shutter wobble, etc. (Section 3.4). This architecture has
several advantages:

Accuracy: The 3D analysis estimates the true rotations between
key frames and does not get confused by mixed rota-
tional/translational motion, varying feature density, non-static
outlier features, etc.

Robustness: The key frames are spaced such that sufficient motion
has occurred to make the 3D rotation estimation reliable. We
show in Section 5.3 that our sparse 3D estimation is faster and
produces smoother results than dense estimation between all
successive frames.

Regularization: The fixed key frames provide a regularizing back-
bone for the 2D optimization of the inner frames. This con-
strains our deformed rotation motion model, prevents gener-
ating new wobble artifacts, and has a strong positive effect on
convergence.

Speed: While we use non-linear optimization for the inner frames,
the problem has a benign error function, is well initialized,
and converges rapidly. We use automatic code generation to
make the objective function residual and Jacobian evaluation
highly efficient (tools for this are provided in a supplementary
document). Our algorithm performs stabilization faster than
playing the video at normal speed.

3.1 Tracking and Key Frame Generation

Like most existing stabilization algorithms, we start by tracking the
motion of feature points in the video. Since our input videos use
equirectangular projection (well-known from world maps, see Fig-
ure 1b for an example), which is highly distorted near the poles, we
convert the frames into a less distorted cube map representation for
tracking (Figure 3). We always use a cube face size of 256×256

(a) Equirectangular representation (b) Cube map
representation

Figure 3: Our input videos are represented in an equirectangular
projection (a). It is highly distorted near the top and bottom, e.g.,
note the hand of the camera person and the rectangular structure
on the roof. For tracking we convert to a cube map representation
(b), which is less distorted and distributes the pixels better among
all directions.

pixels, independent of the input resolution, and only use the luma
plane for tracking.

We experimented with descriptor-based matching but found that a
pyramidal Lukas-Kanade tracking algorithm [Bouguet 2000] yields
longer and less noisy tracks. If a tracked point falls outside its orig-
inating cube face we simply drop that observation and end the track
there. While we track points on planar cube faces, we immediately
convert the 2D locations to 3D unit vectors and store them in a track
table. All subsequent reasoning is done in terms of these 3D unit
vectors.

Our algorithm has a notion of key frames, which play a very im-
portant role as we are estimating their true relative rotations and
they form a regularizing backbone for the subsequent 2D optimiza-
tion. We describe our heuristic for triggering new key frames during
tracking below. At key frames, we spawn new tracks for subsequent
tracking. We use the Shi-Tomasi algorithm to generate a list of fea-
ture points, sorted by decreasing feature strength [Shi and Tomasi
1994]. We walk through the list and accept a feature for spawning
a new track only if it is more than 2◦ away from any previously
selected or actively tracked feature.

We trigger key frames during tracking as follows. The first frame is
always a key frame. Subsequent frames get turned into key frames
based on two heuristics. (1) Points tracked with successive Lucas-
Kanade alignment, as described above, can slowly drift away from
their original appearance due to alignment error accumulation. Shi
and Tomasi [1994] suggest verifying tracks using affine alignment
back to the spawning frame; however, we found that this procedure
significantly slows down the tracking operation. Instead, we sim-
ply turn the current frame into a key frame if its presentation time
stamp difference to the last key frame amounts to more than 3 sec-
onds. This effectively prevented degradation from tracking drift in
our experiments. (2) To reliably estimate rotation as described in
the next section, we need a sufficient number of common tracks be-
tween subsequent key frames. To ensure that this is the case and
they are well distributed, we count at key frames after spawning
new tracks the number of tracks within each octant of the sphere.
As we progress we keep track of the fraction of active tracks that
originated from each octant. Once the fraction for at least one oc-
tant drops below 50%, we turn the previous frame into a key frame
(since in that frame there were still sufficient tracks).

After we have finished tracking the whole video, we cut “dangling
ends” off tracks, so that each track starts and ends at a key frame.

195:3 • 360◦ Video Stabilization

ACM Trans. Graph., Vol. 35, No. 6, Article 195, Publication Date: November 2016

3.2 Estimating Rotations Between Key Frames

Our next goal is to estimate the relative rotation between succes-
sive key frames. Let K = {ki} be the set of key frames. For each
pair of successive key frames (ki,ki+1) we obtain from the feature
tracks a set of matching point pairs. We use a five-point algorithm
in a RANSAC procedure [Fischler and Bolles 1981] to estimate the
relative rotation R̃ki . We experimented with Nistér’s [2004] as well
as Kneip’s [2012] five-point algorithms, using the implementations
provided by the OpenGV library [Kneip and Furgale 2014]. Both
algorithms produced very similar results, even though Nistér’s al-
gorithm theoretically requires a sufficient amount of translational
motion to work robustly. However, we did not find any problems
even when testing with videos where the camera was mounted on a
static tripod. Kneip’s algorithm [2012] guarantees to compute the
correct rotation even in the case of zero translation, so using this
algorithm might be preferable.

We use a relatively lenient inlier threshold to tolerate some amount
of image deformation from rolling shutter and lens deformation. If
the number of model inliers is below a threshold fraction of 0.5,
however, we recursively split the segment and insert a new key
frame in the middle. This tends to increase the number of inliers
as the new key frame pairs are more similar to each other. We re-
peat this until the inlier threshold is satisfied or until there is no
space to insert new key frames. In the rare case where the number
of features in a key frame pair is below 8 matches, we do not use
the five-point algorithm but instead directly find the rotation that
minimizes the relative distances between matched points.

We chain the rotations to make them relative to the first key frame.
Since we are interested in removing rotations from the video, we
store the inverse transformation,

Rki =

(
i

∏
j=1

R̃k j

)−1

. (1)

Applying the Rki rotations to the key frames stabilizes them since it
remove all relative rotation. While errors in the rotation estimation
might produce a slight drift, it is barely perceivable, since the key
frames are spaced on the order of seconds apart.

3.3 Optimizing the Inner Frames

We now shift our attention to the rotations of the inner frames. In
the tracking phase, we computed a set of tracks T = {Ti}, each
being a list of observations (3D unit vectors):

Ti =
{

pi
j | j ∈ fi . . . li

}
. (2)

fi . . . li is the range of frames in which the track was observed, al-
ways starting and ending at a key frame. These tracks form visual
trajectories that can be plotted on the video (Figures 1c). Our goal
is to optimize the inner frame rotations such that these trajectories
become as smooth as possible (Figures 1d-e). This is encoded in
the following optimization problem

argmin
{R j | j∈I}

|T |

∑
i=1

(
li−1

∑
j= fi

E1
i, j +

li−2

∑
j= fi

E2
i, j

)
. (3)

I = 1 . . .n \K is the set of inner frames, i.e., we exclude the key
frames from the optimization; they are fixed to the rotations esti-
mated in Section 3.2. We consider first-order (E1

i, j) and second-
order (E2

i, j) smoothness terms.

The first-order term encourages trajectories to be as short as possi-
ble:

E1
i, j = ρ

(∥∥∥R jpi
j − R j+1pi

j+1

∥∥∥2

2

)
. (4)

ρ (s) = a2 log
(
1+ s

a2

)
is a robust loss function to reduce sensitivity

to outliers, and a = 0.01 sets the scale at which robustification takes
place.

Using just the first-order term is not sufficient because due to its
pairwise nature, it cannot reach across the locked key frames and
would produce visible kinks there. So, we also use a second-order
term that encourages smoothness using a discrete Laplacian opera-
tor and whose 3-tap footprint can reach across key frames:

E2
i, j = ρ

(∥∥∥−R jpi
j +2R j+1pi

j+1−R j+2pi
j+2

∥∥∥2

2

)
. (5)

Combined additively the terms encourage short and smooth trajec-
tories without kinks at key frames. We found that the exact weight
balance between the terms is not critical, as long as they are within
an order of magnitude of each other; so, we weigh them equally in
Equation 3.

When minimizing Eq. 3, we represent all rotations using the 3-
dimensional axis-angle parameterization and use Rodrigues’ for-
mula [Ayache 2007] when they are applied to vectors. Since this
optimization problem is nonlinear, we require a good initialization
of the free variables. We initialize the rotations of the inner frames
using quaternion interpolation of the surrounding key frames:

∀ki < j < ki+1: R j = slerp
(

Rki ,Rki+1 ,
j−ki

ki+1−ki

)
(6)

We use the Ceres library [Agarwal et al. 2015] to solve this non-
linear least-squares minimization problem. We found it converges
usually within 3-4 iterations. Note that the optimization does not
necessarily recover the true rotations but instead the ones that pro-
duce the smoothest possible result, which is after all the primary
goal of stabilization.

3.4 Residual Jitter Compensation

Solving the optimization described in the previous section removes
most of the camera shake, but usually some amount of residual jit-
ter remains (Figure 1d), due to a combination of small translational
motion (e.g., bobbing up and down while walking), parallax, subop-
timal lens calibration, stitching artifacts, and rolling shutter wobble.

We address this problem by adding some flexibility to the motion
model so it can adapt and undo slight image deformations (Fig-
ure 1e). We want to ensure, however, that the model does not be-
come too flexible and that it is constrained properly so it does not
overfit the data and introduce artifacts instead of removing them.

Some of the phenomena listed above could be modeled directly, for
example the characteristics of the rolling shutter function of a par-
ticular camera. However, this is not desirable for several reasons:
(1) It would require calibrating each camera that we would like to
support. In addition, we would have to know which camera each
video was shot with. (2) Since 360◦ cameras use fisheye lenses, the
sensor scanlines undergo a non-trivial transformation when con-
verting to the projection our algorithm operates in. (3) There re-
mains residual jitter from the other sources mentioned above.

For these reasons, we design instead a generic deformation model
to handle all situations above. In this model, we distribute 6 vertices
evenly on the unit sphere so that they are separated by 90◦ angles
from each other, and define 8 congruent spherical triangles, one for

195:4 • J. Kopf

ACM Trans. Graph., Vol. 35, No. 6, Article 195, Publication Date: November 2016

wi
j,0

wi
j,2

wi
j,3

R0
j

R1
j

R2
j

R3
j

R5
j

Bi
j

Figure 4: Our deformed-rotation motion model for handling resid-
ual jitter. Slightly different rotations are defined at 6 vertices and
interpolated using spherical barycentric coordinates.

each octant, as shown in Figure 4. At each vertex v ∈ 1 . . .6 we
store a rotation Rv. Within each spherical triangle we interpolate
the vertex rotations using spherical barycentric coordinates [Langer
et al. 2006], i.e. for a track observation pi

j we obtain the blended
rotation

Bi
j =

6

∑
v=1

wi
j,vRv

j, (7)

where wi
j,v are the spherical barycentric weights. We initialize the

deformed rotation model using the solution of the pure rotation op-
timization, i.e., ∀v, j : Rv

j = R j.

We integrate the new motion model into the stabilization optimiza-
tion problem as follows:

argmin
{Rv

j | j∈I, v∈1...6}

|T |

∑
i=1

(
li−1

∑
j= fi

Ers-1
i, j +

li−2

∑
j= fi

Ers-2
i, j

)
+µ

n

∑
j=1

Ereg
j (8)

The first- and second-order smoothness terms, Ers-1
i, j and Ers-2

i, j ,
are similar to the pure rotation version, except we replace all oc-
currences of rotations, R j,R j+1,R j+2 with their blended versions
Bi

j,B
i
j+1,B

i
j+2. We set the balancing coefficient µ = 0.1. The regu-

larization term, Ereg
j , prevents the deformations from becoming too

strong:
Ereg

j = ∑
v,w∈1...6

d
(

Rv
j,R

w
j

)
, (9)

where d is a measure of closeness of rotations. An appropriate
choice for d would be the required angle of rotation to get from
one orientation to the other. Since it is simpler to optimize we in-
stead use the Euclidean distance of the axis-angle representation
coefficients, which is a good approximation for reasonably close
orientations.

A second layer of regularization is provided by the fact that the
fixed key frames use pure rotation. This effectively prevents the
rolling shutter compensation from drifting too far off, since the key
frames are interpolated.

3.5 Implementation Details

Analytic derivatives: Non-linear optimization algorithms de-
pend on being able to evaluate the Jacobians of the objective func-
tions with respect to the parameter values. The objective functions
in Equations 3 and 8 are highly complex, and it is difficult to work
out the derivative expressions manually. For that reason, the Ceres
library provides an automatic differentiation technique using oper-
ator overloading [Agarwal et al. 2015]. However, this approach is

not as efficient as would be desirable, since it cannot make full use
of compiler optimizations and avoid redundancies inherent in com-
puting the various expressions.

To improve this situation, we wrote a Python script that automati-
cally generates highly efficient C++ code for the objective function
residuals and their Jacobians. We use the SymPy package [SymPy
Development Team 2016] to express the residuals symbolically and
take their derivatives. We then use term rewriting techniques to
recursively identify common subexpressions in these larger terms,
and collect them so they can be evaluated at once. Finally, we use
automatic code generation to translate the optimized expressions
into C++ code. The analytic derivatives generated in this way pro-
vide a 2×−3× performance improvement over the automatic dif-
ferentiation code.

We provide the final C++ code as well as the Python script that was
used to generate it in a supplementary document. It is a useful piece
of code, as it can be easily adapted to other objective functions.

Image warping: In order to render an output frame using back-
wards warping, we need to invert the deformed rotation model. We
use iterative search [Yang et al. 2011]. However, evaluating Equa-
tion 7 and various transformations multiple times per pixel requires
a significant amount of computation. Since the resulting warp func-
tion is quite smooth, we evaluate the warp coordinates only for 1 in
every 8×8 pixels, and interpolate the remaining coordinates bilin-
early. This looks visually nearly identical, but improves the warping
speed dramatically.

4 Extensions

In the previous section, we described our basic algorithm for re-
moving shake in 360◦ videos. Here we describe several interesting
extensions that are layered on top of the basic algorithm.

4.1 Reapplying Smoothed Rotations

The algorithm described in the previous section removes all rota-
tion from the input video. This seems appropriate for VR experi-
ences where any induced acceleration (such as rotation) can cause
discomfort [Kennedy et al. 2010].

However, in a video such as MOUNTAIN BIKING (Figure 7), where
the camera makes slow turns, it causes the direction of forward mo-
tion direction to drift away from the viewer’s “front” direction. In
the case where a video is not watched in VR but on a computer or
mobile device, we would like to preserve the overall camera front
direction and just remove the high-frequency jitter.

We achieve this by adding back a smoothed version of the raw ro-
tation estimates that we subtracted from the video when stabiliz-
ing it. We compute the smoothed rotations by low-pass filtering
their quaternion representation temporally, smoothing each of the 4
quaternion components independently and normalizing the result.
Figure 5 shows the raw rotation estimates and the smoothed curve
that is reapplied to the video. An interesting extension would be to
consider L1-smoothness constraints based on cinematography prin-
ciples as proposed by Grundmann et al. [2011].

4.2 Two-pass Tracking

Tracking through very shaky sections of a video is difficult, since
the appearance of patches changes significantly due to perspective
distortion and tracks drift across different cube map faces (which
we don’t support). We can improve the result in this situation

195:5 • 360◦ Video Stabilization

ACM Trans. Graph., Vol. 35, No. 6, Article 195, Publication Date: November 2016

R
o
ta

ti
o
n

Time
Figure 5: Smoothing the stabilizing rotation estimates to preserve the overall camera forward direction while removing the residual jitter.
The dashed curve shows the stabilizing rotations computed in Section 3, and the solid curve shows the smoothed version (only one of the 4
quaternion components is shown).

V
el

oc
it
y

Time
Figure 6: Estimated velocity curve for the DOWNHILL SKIING video. The sections where the skier took breaks stand out clearly. The dashed
curve shows the raw velocity estimates, and the solid curve shows the smoothed version.

by repeating the tracking after rotational stabilization. In the sec-
ond tracking phase, we apply the stabilizing rotational adjustments
when converting the input video to the cube map representation
used for tracking. On the DOWNHILL SKIING video, we found
that this increases the average track length from 62 to 78 frames.
We notice that for particularly shaky inputs, two-pass tracking can
give a slight but noticeable boost in smoothness (see Section 5.3).

4.3 Hyperlapse

Since our stabilized 360◦ videos are so smooth, they provide excel-
lent source material for creating speed-up hyperlapse videos [Kopf
et al. 2014]. Since 360◦ videos are always full-frame, there is no
need to blend bits and pieces from multiple frames, which seems to
have been the source of most technical challenges in Kopf et al.’s
system.

Creating 360◦ hyperlapse simply by dropping all but every n-th
frame in a sequence stabilized with our algorithm already looks
great. However, a common element of hyperlapse videography is
a smoothly balanced camera velocity. We can modify the apparent
camera velocity by remapping the video frame time stamps in the
stabilized video.

First, we need to estimate the camera velocity at every frame. In-
stead of turning to 3D reconstruction and all its problems, we use a
simple 2D approximation: a robust average of the after-stabilization
motion vector magnitudes. This simple measure would not work
with narrow field-of-view video, because the motion vectors be-
have differently when the camera is pointed forward vs. to the side,
which would bias the velocity estimate. In 360◦ video, however,
we always see all angles, so we do not suffer from this problem at
all.

We start by computing the median motion vector magnitude for
each frame:

v j = median
{

cos−1(pi
jp

i
j+1
)
| fi ≤ j < li

}
. (10)

This estimate is very noisy (dashed curve in Figure 6). We process
it further by removing outliers using a running temporal median (ra-
dius 4 seconds) followed by a low pass filter (σ = 1 second). This
smoothed velocity estimate is shown as the solid curve in Figure 6.
It can be used to simulate a constant camera velocity by remapping
the video frame time stamps inversely proportional to the cumula-
tive velocity function. If it is desired to reapply smoothed orienta-
tion, as described in Section 4.1, it is important to consider these

modified time stamps when low-pass filtering the orientation curve.
Please refer to the supplementary material for example results.

5 Results

We tested our algorithm on eight hand-held 360◦ video sequences
of different activities with varying amounts of shake. The full input
and stabilized sequences are provided in the supplementary mate-
rial. Figure 7 shows a sample frame from each sequence.

5.1 Performance

We implemented our algorithm without GPU acceleration to make
it amenable for execution on standard cloud hardware. Figure 8
summarizes the performance of our algorithm. The timings were
measured when processing the MARKET WALK sequence at 1080p
input/output resolution on an Intel Core i7-5930K CPU at 3.50GHz.
The sequence is 310 seconds (9,292 frames) long and processing
took 201 seconds, i.e., stabilization took less time than playing the
video at normal speed. In the table, we break the process down
into different algorithm stages and report timings per frame. We do
not include the final video decoding and encoding steps, since they
are fundamental parts of a video transcoding pipeline, and highly
dependent on codec parameters. We found that these timings do
not vary significantly for different sequences. The total memory
consumption during the process was at all times less than 2 GB.

5.2 Effect of Stabilization on Video Bit Rate

It is not surprising that stabilization can have a beneficial effect on
video bit rate consumption. There are some non-obvious insights
for 360◦ video, however. First, because the stabilized videos are
not cropped, we can trivially recover the original shaky sequence
from the stabilized result. Second, since any 360◦ viewer already
applies rotational view transformations, we can do this without any
additional computation (at least if we use pure rotation stabiliza-
tion). We found that the bit rate reductions can be substantial.

We analyzed the bit rate consumption when encoding the video into
H.264/MPEG-4 AVC format using the x264 library4. Figure 9 sum-
marizes our findings. We analyzed two sequences: CABLE CAR
(blue colors) and DOWNHILL SKIING (orange colors). The first

4http://www.videolan.org/developers/x264.html

195:6 • J. Kopf

ACM Trans. Graph., Vol. 35, No. 6, Article 195, Publication Date: November 2016

http://www.videolan.org/developers/x264.html

DOWNHILL SKIING MOUNTAIN BIKING KAYAKING SANTIAGO MARKET WALK

CABLE CAR CITY BIKING PIKE MARKET WALK TODDLER

Figure 7: Some sequences we have run our stabilization on. The supplemental material contains the full videos.

Stage Time / frame
Video decoding (ffmpeg, luma only) 7.91ms
Equirect to cube conversion 0.73ms
Pyramid construction 0.87ms
Feature generation (at key frames) 0.10ms
Translational Lucas-Kanade tracking 2.19ms
Rotation estimation (at key frames) 0.10ms
Rotation optimization (inner frames, Eq. 3) 2.20ms
RS optimization (inner frames, Eq. 8) 1.84ms
Warp coordinate computation 3.46ms
Frame warping 2.20ms
Total 21.60ms

Figure 8: Per-frame performance break down of our 360◦ video
stabilization algorithm. We can stabilize videos faster than real-
time (i.e., playback rate).

scene is mostly static and has a low amount of shake, while the lat-
ter contains very fast, shaky motion. We stabilized both sequences
with the pure rotation (light shade) and deformed rotation (dark
shade) motion models. For each experiment we encoded the first
600 frames of the unprocessed, pure rotation, and deformable rota-
tion model into an H.264 stream using a 30 frames long group of
pictures (GOP) structure, i.e., each stream consists of 20 GOPs. We
then compare the size of each pure-rotation and deformed-rotation
GOP against the corresponding unstabilized GOP and report the
average size fraction in the figure.

In the left half of the figure we fix the encoding parameter preset
to “very slow” and vary the constant rate factor (CRF, i.e., qual-
ity setting), while in the right half we fix the CRF to 21 and vary
the preset meta-parameter instead. For both sequences and all set-
tings, we found a considerable reduction in bit rate. To our surprise
the savings for the less shaky CABLE CAR sequence were far more
substantial, which is likely due to the fact that the scene is mostly
static and becomes very redundant after stabilization and rolling
shutter compensation, while the DOWNHILL SKIING sequence re-
mains fast moving even with stabilization.

5.3 Comparisons and Quantitative Evaluation

While we provide qualitative results and comparisons in the sup-
plementary material (i.e., videos to watch), we look here into some
quantitative experiments. We can use the first-order and second-
order penalties in Equations 4 and 5 to numerically evaluate the
smoothness of a given result. In order to do this we collect all track
observations and evaluate the first-order and second-order penal-
ties. Figure 10 shows the distribution functions for these quantities

for different variants of our stabilization algorithm. We compare
pure rotation (Section 3.3) and deformed rotation (Section 3.4) mo-
tion models, both in 1-pass and 2-pass tracking mode. In Figure 11
we show aggregate statistics in tabular form.

In addition to the variants mentioned above we also compare
against running the 3D rotation analysis (Section 3.2) densely on all
successive frames. This corresponds roughly to a reimplementation
of the Jack-In Head (LiveSphere) method [Kasahara et al. 2015].
The evaluation shows that this results in significantly less smooth
results (please refer to the supplementary material for a video com-
parison).

5.4 Limitations

Very strong rolling shutter deformations and, in particular, high fre-
quency rolling shutter deformations with frequency greater than
the frame rate cannot be not represented by our low frequency
deformed-rotation model. While we do not always completely suc-
ceed in removing these deformations, our output still tends to be
more stable and watchable than the input in these cases.

Another issue of the deformed-rotation model is that it might oc-
casionally introduce slight wobbling in the result. This effect is
relatively mild and can be observed in our result videos.

Our method does not always yield good results on “produced”
videos. For example, the algorithm as described here does not han-
dle shot boundaries: it may track and stabilize the video across the
shot boundary with unpredictable results. It would be relatively
straight-forward to add code to detect and handle this situation ap-
propriately.

Another common failure mode with produced videos occurs if they
contain static overlays such as logos or text. In this case our sta-
bilizer might stabilize the shaky background motion, which will in
turn make the overlays appear shaking.

6 Conclusions

We have presented a method for 360◦ video stabilization. Our
method is a hybrid 3D-2D method. It uses 3D analysis to esti-
mate the rotation between key frames that are appropriately spaced
such that we can reliably estimate the true rotations. For the in-
between frames we solve a 2D optimization problem that maxi-
mizes the smoothness of tracked feature point trajectories. A flex-
ible deformed-rotation motion model enables reducing residual jit-
ter caused by small translational motion, parallax, rolling shutter
wobble, etc. Our novel stabilization architecture provides more ac-

195:7 • 360◦ Video Stabilization

ACM Trans. Graph., Vol. 35, No. 6, Article 195, Publication Date: November 2016

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

CRF=15 CRF=18 CRF=21 CRF=24 CRF=27 CRF=30 Faster Fast Medium Slow Slower Very Slow

Cable Car, pure rotation Cable car, deformed rotation Downhill Skiing, Pure rotation Downhill Skiing, deformed rotation

Figure 9: Our stabilization lowers the video bit rate by 10%-20% at equal quality settings. The reductions are consistent for different settings
of the encoding quality and preset parameters (left: fixed preset “very slow”, varying quality; right: fixed quality CRF=21, varying preset).
We plot the bit rate for pure rotation and deformed rotation stabilization relative to the unstabilized video bit rate for two sequences.

0.0001

0.001

0.01

0.1

0.0001

0.001

0.01

0.1

Input Dense 3D Rotation (1 pass) Rotation (2 pass) Deformed (1 pass) Deformed (2 pass)

Figure 10: Numerical evaluation of different 360◦ video stabiliza-
tion variants. The curves show the cumulative distribution function
of first-order (left) and second-order (right) smoothness costs for
the stabilized feature trajectories.

Method
Dense Our Method

Original rotation Rotation only RS comp.
estimation 1-pass 2-pass 1-pass 2-pass

E1 average 21.80 8.21 9.72 7.86 9.30 7.32
E1 median 16.07 3.77 4.11 3.40 3.66 2.74
E2 average 11.83 4.93 5.32 4.25 4.42 3.25
E2 median 6.70 2.17 1.63 1.49 0.87 0.71

Figure 11: Numerical evaluation of smoothness penalties in tabu-
lar form. Smoother results are signified by lower numbers.

curacy, robustness, smoothing ability and speed than either pure
2D or pure 3D methods. The results are sufficiently smooth to be
played back at high speed-up factors. For this purpose we present a
simple 360◦ hyperlapse algorithm that remaps the video frame time
stamps to balance the apparent camera velocity.

360◦ video is an exciting new medium, whose underlying technol-
ogy is rapidly improving. While today’s 2K resolution still leaves
room for improvement when shooting 360◦ video, 4K and larger
resolutions will soon become widely available to consumers. Even
if the desired end result is a regular narrow field-of-view video, it
may soon “make sense” to always shoot in 360◦, because no angle
is missed and the video can be framed later. Our stabilization al-
gorithm provides a fundamental building block to the 360◦ video
processing pipeline.

References

AGARWAL, S., MIERLE, K., AND OTHERS, 2015. Ceres Solver.
http://ceres-solver.org.

AYACHE, N. 2007. Vision Stéréoscopique et Perception Multisen-
sorielle.

BAKER, S., BENNETT, E. P., KANG, S. B., AND SZELISKI, R.
2010. Removing rolling shutter wobble. Computer Vision and
Pattern Recognition, 2392–2399.

BHAT, P., ZITNICK, C. L., SNAVELY, N., AGARWALA, A.,
AGRAWALA, M., COHEN, M., CURLESS, B., AND KANG,
S. B. 2007. Using Photographs to Enhance Videos of a Static
Scene. Proceedings of the 18th Eurographics Conference on
Rendering Techniques (EGSR’07), 327–338.

BOUGUET, J. 2000. Pyramidal implementation of the Lucas
Kanade feature tracker. Intel Corporation, Microprocessor Re-
search Labs.

BUEHLER, C., BOSSE, M., AND MCMILLAN, L. 2001. Non-
Metric Image-Based Rendering for Video Stabilization. 2014
IEEE Conference on Computer Vision and Pattern Recognition
2, 609.

FISCHLER, M. A., AND BOLLES, R. C. 1981. Random Sample
Consensus: A Paradigm for Model Fitting with Applications to
Image Analysis and Automated Cartography. Commun. ACM
24, 6, 381–395.

GOLDSTEIN, A., AND FATTAL, R. 2012. Video Stabilization
Using Epipolar Geometry. ACM Trans. Graph. 31, 5, article
no. 126.

GRUNDMANN, M., KWATRA, V., AND ESSA, I. 2011. Auto-
Directed Video Stabilization with Robust L1 Optimal Camera
Paths. IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR).

KAMALI, M., BANNO, A., BAZIN, J.-C., KWEON, I., AND
IKEUCHI, K. 2011. Stabilizing Omnidirectional Videos Using
3D Structure and Spherical Image Warping. Proceedings of the
12th IAPR Conference on Machine Vision Applications (MVA).

KASAHARA, S., NAGAI, S., AND REKIMOTO, J. 2015. First Per-
son Omnidirectional Video: System Design and Implications for
Immersive Experience. Proceedings of the ACM International

195:8 • J. Kopf

ACM Trans. Graph., Vol. 35, No. 6, Article 195, Publication Date: November 2016

http://ceres-solver.org

Conference on Interactive Experiences for TV and Online Video,
33–42.

KENNEDY, R. S., DREXLER, J., AND KENNEDY, R. C. 2010. Re-
search in visually induced motion sickness. Applied Ergonomics
41, 4, 494–503.

KNEIP, L., AND FURGALE, P. T. 2014. OpenGV: A Unified and
Generalized Approach to Real-time Calibrated Geometric Vi-
sion. IEEE International Conference on Robotics and Automa-
tion (ICRA 2014), 1–8.

KNEIP, L., ROLAND, S., AND MARC, P. 2012. Finding the exact
rotation between two images independently of the translation.
Proceedings of the European Conference on Computer Vision
(ECCV).

KOPF, J., COHEN, M. F., AND SZELISKI, R. 2014. First-person
Hyper-lapse Videos. ACM Transactions on Graphics 33, 4, arti-
cle no. 78.

LANGER, T., BELYAEV, A., AND SEIDEL, H.-P. 2006. Spherical
Barycentric Coordinates. Proceedings of the Fourth Eurograph-
ics Symposium on Geometry Processing (SGP ’06), 81–88.

LIU, F., GLEICHER, M., JIN, H., AND AGARWALA, A. 2009.
Content-preserving Warps for 3D Video Stabilization. ACM
Trans. Graph. 28, 3, article no. 44.

LIU, F., GLEICHER, M., WANG, J., JIN, H., AND AGARWALA,
A. 2011. Subspace Video Stabilization. ACM Trans. Graph. 30,
1, article no. 4.

LIU, S., YUAN, L., TAN, P., AND SUN, J. 2013. Bundled camera
Paths for Video Stabilization. ACM Transactions on Graphics
(TOG) (Proceedings of SIGGRAPH 2013) 32, 4.

LIU, S., YUAN, L., TAN, P., AND SUN, J. 2014. SteadyFlow: Spa-
tially Smooth Optical Flow for Video Stabilization. Computer
Vision and Pattern Recognition (CVPR), 2014 IEEE Conference
on, 4209–4216.

MORIMOTO, C., AND CHELLAPPA, R. 1998. Evaluation of image
stabilization algorithms. Proceedings of the 1998 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP’98), 2789–2792.

NISTÉR, D. 2004. An Efficient Solution to the Five-Point Rela-
tive Pose Problem. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26, 6, 756–777.

SHI, J., AND TOMASI, C. 1994. Good Features to Track.
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’94), 593–600.

SYMPY DEVELOPMENT TEAM. 2016. SymPy: Python library for
symbolic mathematics.

YANG, L., TSE, Y.-C., SANDER, P. V., LAWRENCE, J., NEHAB,
D., HOPPE, H., AND WILKINS, C. L. 2011. Image-based Bidi-
rectional Scene Reprojection. ACM Trans. Graph. 30, 6, article
no. 150.

195:9 • 360◦ Video Stabilization

ACM Trans. Graph., Vol. 35, No. 6, Article 195, Publication Date: November 2016

