
First-person Hyper-lapse Videos

Johannes Kopf
Microsoft Research

Michael F. Cohen
Microsoft Research

Richard Szeliski
Microsoft Research

(a) Scene reconstruction (b) Proxy geometry (c) Stitched & blended

Figure 1: Our system converts first-person videos into hyper-lapse summaries using a set of processing stages. (a) 3D camera and point
cloud recovery, followed by smooth path planning; (b) 3D per-camera proxy estimation; (c) source frame selection, seam selection using a
MRF, and Poisson blending.

Abstract

We present a method for converting first-person videos, for ex-
ample, captured with a helmet camera during activities such as
rock climbing or bicycling, into hyper-lapse videos, i.e., time-
lapse videos with a smoothly moving camera. At high speed-up
rates, simple frame sub-sampling coupled with existing video sta-
bilization methods does not work, because the erratic camera shake
present in first-person videos is amplified by the speed-up. Our al-
gorithm first reconstructs the 3D input camera path as well as dense,
per-frame proxy geometries. We then optimize a novel camera path
for the output video that passes near the input cameras while ensur-
ing that the virtual camera looks in directions that can be rendered
well from the input. Finally, we generate the novel smoothed, time-
lapse video by rendering, stitching, and blending appropriately se-
lected source frames for each output frame. We present a number
of results for challenging videos that cannot be processed using tra-
ditional techniques.

CR Categories: I.3.8 [Computer Graphics]: Applications;

Keywords: hyper-lapse, time-lapse, image-based rendering

Links: DL PDF WEB VIDEO DATA CODE

1 Introduction

Yesterday’s cameras were expensive, heavy, and difficult to operate
devices, but those days are past. Today, digital cameras are cheap,
small, easy to use, and have become practically ubiquitous. Cam-
eras are now commonly attached to our cars, computers, phones and

wearable cameras are becoming popular. Well known examples of
wearable cameras include the GoPro, the Sony Action Cam, and
Google Glass. We call these first-person cameras, since the action
is seen as if through the eye of the camera operator.

First-person cameras are typically operated hands-free, allowing
filming in previously impossible situations, for example during ex-
treme sport activities such as surfing, skiing, climbing, or even
sky diving. In many cases, first-person video is captured implic-
itly, rather than through explicit start-stop commands. Processing
and consuming the resulting videos poses significant challenges for
casual users. Such videos suffer from erratic camera shake and
changing illumination conditions. More importantly, however, the
videos are usually long and monotonous, which makes them boring
to watch and difficult to navigate.

There has been a substantial amount of work on extracting impor-
tant scenes from video [Chen et al. 2007; Detyniecki and Marsala
2008; Money and Agius 2008]. However, these techniques require
high level scene understanding and have not reached a level of ro-
bustness that would make them practical for real-world tasks. A
simpler and more robust technique that does not require scene un-
derstanding is time-lapse, i.e., increasing the speed of the video by
selecting every n-th frame. Most first-person videos depict mov-
ing cameras (e.g., walking, hiking, climbing, running, skiing, train
rides, etc.). Time-lapse versions of such videos are sometimes
called hyper-lapse to emphasize that the camera is moving through
space as well as accelerated through time.

Carefully controlled moving camera videos, such as those mounted
on the front of a train, or extracted directional subsets of street-view
panoramas, can be easily processed into hyper-lapse videos such
as those at http://hyperlapse.tllabs.io/ and http:
//labs.teehanlax.com/project/hyperlapse. Unfor-
tunately, more casually captured videos such as from walking, run-
ning, climbing, or helmet mounted cameras during bicycling have
significant shake and/or twists and turns. Increasing the frame rate
of such videos amplifies the camera shake to the point of making
these videos un-watchable.

Video stabilization algorithms could conceivably help create
smoother hyper-lapse videos. Although there has been significant
recent progress in video stabilization techniques (see Section 2),
they do not perform well on casually captured hyper-lapse videos.

http://doi.acm.org/10.1145/2601097.2601195
http://portal.acm.org/ft_gateway.cfm?id=2601195&type=pdf
http://research.microsoft.com/en-us/um/people/kopf/hyperlapse
http://research.microsoft.com/en-us/um/people/kopf/hyperlapse
http://research.microsoft.com/en-us/um/people/kopf/hyperlapse
http://research.microsoft.com/en-us/um/people/kopf/hyperlapse
http://hyperlapse.tllabs.io/
http://labs.teehanlax.com/project/hyperlapse
http://labs.teehanlax.com/project/hyperlapse


The dramatically increased camera shake makes it difficult to track
the motion between successive frames. Also, since all methods op-
erate on a single-frame-in-single-frame-out basis, they would re-
quire dramatic amounts of cropping. Applying the video stabiliza-
tion before decimating frames also does not work because the meth-
ods use relatively short time windows, so the amount of smoothing
is insufficient to achieve smooth hyper-lapse results.

In this paper, we present a method to create smooth hyper-lapse
videos that can handle the significant motion noise in casually cap-
tured moving first-person videos. Similar to some previous stabi-
lization techniques, we use structure-from-motion to build a 3D
model of the world. We extend these techniques to a larger scale
than previous work. We also compute per-frame 3D proxies for
later use in our image-based rendering stage (Figure 1a–b).

The reconstructed camera positions plus geometric model allows us
to optimize a new smoothed camera path in 6D pose space. Most
previous methods employ relatively simple path smoothing algo-
rithms, for example low-pass temporal filtering. With the substan-
tial amount of smoothing required for time-lapse videos, simple al-
gorithms do not give good results. In Section 5, we describe a novel
optimization-based approach that balances several objectives.

Finally we render our output hyper-lapse video. Unlike previous
stabilization work, we combine several input frames to form each
output frame to avoid the need for over-cropping (see Figures 1c
and 7). We leverage the recovered camera parameters and local
world structure using image-based rendering techniques to recon-
struct each output frame. We show resulting hyper-lapse videos
from a number of input videos and discuss limitations and ideas for
future work.

2 Previous Work

Our work is related to previous work in 3D video stabilization, 3D
scene reconstruction, and image-based rendering.

Traditional video stabilization techniques use parameteric global
transforms such as translations and rotations (optionally followed
by local refinements), since these can be estimated quickly and ro-
bustly [Matsushita et al. 2006]. More recent techniques perform
a full or partial (e.g., projective) reconstruction of the scene and
camera motion. Liu et al. [2009] compute 3D camera trajectories
and sparse 3D point clouds, which are then used to compute local
“content-preserving” warps of the original video frames. In sub-
sequent work, they extend their technique to work in cases where
accurate 3D motion and geometry may not be available using sub-
space constraints on motion trajectories [Liu et al. 2011].

Grundmann et al. [2011] optimize the camera path based on L1
norms of pose and its derivatives, which better simulate the ac-
tions of studio cameras. They also investigate the use of seam carv-
ing (video retargeting) techniques. Goldstein and Fattal [2012] use
non-metric projective reconstruction and epipolar transfer to stabi-
lize videos, again for cases where full 3D reconstructions cannot be
reliably obtained, such as scenes with moving objects. Finally, Liu
et al. [2013] use bundles of local camera paths to handle non-rigid
effects such as rolling shutter while also minimizing geometric dis-
tortions. In our work, we also use 3D camera path reconstruction,
but we synthesize our final frames from multiple source frames us-
ing image-based rendering.

In order to compute our 3D camera motions and scene proxies, we
build upon techniques from structure-from-motion, which has seen
dramatic progress in recent years [Snavely et al. 2006; Crandall
et al. 2013; Wu 2013]. Similar to many of these papers, we use
an incremental approach that adds well estimated cameras to the

current 3D reconstruction. To handle our large datasets, we first
remove redundant frames and then partition the frames into over-
lapping blocks. In order to estimate continuous 3D proxies for each
frame, we interpolate a densified version of the 3D point cloud. De-
tails on these components are presented in Section 4.

3 Overview

We captured first-person videos of several sport activities, such as
cycling, hiking, or climbing, with GoPro Hero2 and Hero3 cameras
(Table 1). The videos range from 3 to 13 minutes. Our goal is to
speed these up by a factor of about 10×. As we show in Section
7, the amplification of camera shake resulting from the speed-up
greatly exceeds the smoothing capabilities of existing video stabi-
lization technologies.

The key to achieving better results with our system is in reconstruct-
ing an accurate representation of the scene, which allows us to op-
timize a new camera path in 6D pose space that is smooth while not
deviating too far from the original cameras. It also supports using
image-based rendering techniques and fusing multiple input frames
to produce one output frame.

Our method consists of three stages:

1. Scene reconstruction: using structure-from-motion algorithms
followed by dense depth map interpolation (Section 4);

2. Path planning: optimizing a 6D camera path that is smooth in
location and orientation, passes near all of the input cameras,
and is oriented towards directions which we can render well
(Section 5);

3. Image-based rendering: projecting, stitching, and blending
carefully selected input frames with per-frame proxy geom-
etry (Section 6).

4 Scene Reconstruction

In the first stage of our system, we reconstruct both scene geometry
and camera positions for each frame of the input.

4.1 Preprocessing

The GoPro cameras we use capture video in a fish-eye projection
with about 170◦ diagonal field of view. We use the OCamCalib
toolbox [Scaramuzza et al. 2006] to calibrate the lens distortion
and convert the videos to (cropped) linear perspective projection.
While this change of projection is not strictly necessary, it simpli-
fies the implementation of the remaining steps while removing only
the most distorted corners of the fisheye images. The converted per-
spective input videos have a field of view of about 112◦×86◦ in the
horizontal and vertical directions, respectively.

4.2 Structure-from-Motion

Once these images have been reprojected, our next step is to es-
timate the extrinsic camera parameters of the input video frames
as well as depth maps for the input images. This problem can
be solved using structure-from-motion algorithms. We use an in-
cremental algorithm similar to the ones described by Snavely et
al. [2006] and Wu [2013]. The algorithm estimates the location and
orientation of the input cameras. In addition, it computes a sparse
3D point cloud, where each point has an associated list of frames
where it is visible.

The algorithm starts by finding feature points in every image and
matching them among all pairs. For a small percentage of frames



(a) Original match graph (b) Redundant frames (c) Reduced match graph (d) Partition into batches

Figure 2: Removing rendundant frames and batch processing. Places where the camera has stopped moving, e.g., at a red light, show up as
blocks on the diagonal of the match graph. We detect and remove these, and partition the resulting reduced match graph into overlapping
blocks for independent processing.

that are strongly affected by motion blur or are completely texture-
less the algorithm might not find enough feature points that can be
reliably matched. We drop these frames from the reconstruction
and ignore them in the subsequent stages. Next, we remove redun-
dant frames by searching for rows and columns in the match table
that have large off-diagonal components and removing these from
the original set of video frames (Figures 2a–c). We then run the
remainder of the incremental structure-from-motion pipeline.

A difficulty with this approach is that incremental structure-from-
motion algorithms do not scale well to problems as large as ours. In
fact, we terminated an initial attempt to reconstruct a long video af-
ter a week of runtime. To alleviate this problem, we divide our
datasets into overlapping batches of 1400 frames each with 400
frames overlap and reconstruct each batch separately in parallel
(Figure 2d), which takes less than an hour for each batch.

To combine the batches into a single global coordinate system
we first compute the best rigid alignment between all pairs using
Horn’s method [1987]. The cameras within the overlaps between
batches now have 2 coordinates. We resolve the ambiguity by lin-
early combining them, where the blending weight moves from 0 to
1 in the overlap zone. Finally, we run one more round of bundle
adjustment on the global system. After having obtained the full re-
construction, we scale it so that the average distance between two
consecutive input cameras is 1. Figure 1a shows an example of the
estimated camera path and sparse 3D point cloud produced by this
pipeline.

4.3 Proxy Geometry

The reconstruction described in the previous subsection is sparse,
since the depth is only known at a few isolated points in each frame.
Accurately rendering the frame’s geometry from a novel viewpoint
requires dense depth maps or surface models. In this section, we de-
scribe how we use interpolation techniques to obtain smooth proxy
geometries. To get the best quality, however, we need to first in-
crease the density of points within each frame.

For this, we turn to guided matching [Beardsley et al. 1996]. Since
we now have a good estimate of the camera poses, we can run fea-
ture point matching again but in a less conservative manner. Since
a feature point in one image has to lie along the epipolar line in
the neighboring images, we only match with other feature points
nearby this line (we use a rather large search radius of 10 pixels to

account for rolling shutter distortion). This dramatically increases
the likelihood of finding matches.

As in other SfM algorithms, to robustly compute 3D points from
feature matches, we form tracks of features across multiple frames.
The original algorithm [Snavely et al. 2006] computes tracks by
connecting all pairwise matching feature points with common end-
points. It then drops any tracks that loop back on themselves, i.e.,
that contain more than one feature point in the same image. We
found this strategy too strict, since it forms and then rejects many
large tracks. Instead we use a simple greedy algorithm that builds
tracks by successively merging feature matches, but only if the
merge would not result in a track that contains two features in the
same image. Finally, we triangulate a 3D point for every track by
minimizing the reprojection error. This is a non-linear least squares
problem, which we solve using the Levenberg-Marquardt algorithm
[Nocedal and Wright 2000].

Having increased the number of points, we are now ready to com-
pute a dense mesh for every frame. We divide the field of view
into a regular grid mesh of w× h vertices (we set w = 41 and h
proportional to the inverse aspect ratio of the input video in our
implementation). Our goal now is to compute the depth of every
vertex in the mesh. However, since the reprojection error is related
to disparity (inverse depth), we solve for disparity, d(x), for every
vertex x, instead. This is also practical because it avoids numerical
problems with distant parts of the scene (i.e., points at infinity). Our
objectives are to approximate the sparse points where the depth is
known and to be smooth elsewhere. We achieve this by solving the
following optimization problem:

min
{d(x)}

∑
x∈V

Edepth(x) + ∑
x∈V, y∈N(x)

Esmooth(x,y), (1)

where V is the set of vertices, and N(x) is the 4-neighborhood of x.

The unary term

Edepth(x) = ∑
i

B(x− pi)
(
d(x)− z−1

i
)2 (2)

measures the approximation error. pi and zi are the image space
projection and depth of the sparse reconstructed points, and B is a
bilinear kernel whose width is one grid cell. The pairwise term

Esmooth(x,y) = λ (d(x)−d(y))2 (3)



p(t)

pk
in

ck(x,y,t)

φk
ULG

ŝ

û

J

(x,y)

p(t)

pk
in

(x,y)

v1
v2

v3

M

s1
^

û2

(a) (b)

Figure 3: Rendering quality term computations. (a) The Unstructured Lumigraph angular error ϕULG
k measures the angle between the

direction vectors ŝ and û from the new p(t) and original pin
k camera centers and the proxy surface point ck(x,y, t). The affine transform J can

be used to compute the texture stretch ϕTS
k at the reference pixel (x,y) but depends on the orientation of the new (rendering) camera. (b) The

view invariant texture stretch ϕTS3
k can be computed using the condition number of the 3×3 mapping M between the unit vectors ŝi and ûi

pointing from the camera centers to the vertices vi of the proxy triangle.

encourages a smooth solution. λ = 1 balances between both objec-
tives. The solution to Eq. 1 is a set of sparse linear equations, which
we solve using a standard linear least-squares solver.

At this point, we have recovered the camera positions and orienta-
tions for each frame. In addition, we have a depth map in the form
of a dense rectangular grid of points for each frame (Figure 1b).

5 Path Planning

Having a reconstruction of the scene, we now compute a smooth
path for the output video. Our goal is to satisfy several conflicting
objectives: we seek a path that is smooth everywhere and approxi-
mates the input camera path, i.e., it should not venture too far away
from the input camera poses. Further it should be oriented toward
directions that we can render well using image-based rendering.

Most previous methods employ path smoothing algorithms
[Snavely et al. 2008; Liu et al. 2009; Liu et al. 2011; Goldstein and
Fattal 2012; Liu et al. 2013]. However, we found that these simple
algorithms cannot produce good results with our rather shaky input
camera paths. We compare against these approaches in Section 7
and Figure 10.

Instead, we formulate path planning as an optimization problem
that tries to simultaneously satisfy the following four objectives:

1. Length: The path should be no longer than necessary;

2. Smoothness: The path should be smooth both in position and
orientation;

3. Approximation: The path should be near the input cameras;

4. Rendering quality: The path should have well estimated proxy
geometry in view for image-based rendering.

We first formalize these objectives in Section 5.1, and then describe
how to optimize them in Sections 5.2–5.5.

5.1 The Objectives

Let
{

pin
k ,R

in
k
}

be the set of input camera positions and rotation ma-
trices, and let p(t) and f(t) be the desired output camera continuous
position and orientation curves, respectively. f(t) is represented as
a unit front vector, i.e., it has two degrees of freedom. We define
the remaining right and up vectors by taking cross products with a
global world up vector. We assume the field of view of the output

camera is a fixed user-supplied parameter and set it to 80% of the
input camera’s field of view in all our results.

The length and smoothness objectives are stated mathematically as
penalty terms:

Elength =
∫ ∥∥p′(t)

∥∥2 dt (4)

Esmooth-p =
∫ ∥∥p′′(t)

∥∥2 dt (5)

Esmooth-f =
∫ ∥∥f ′′(t)

∥∥2 dt (6)

For the approximation requirement, we seek to minimize the dis-
tance of every input camera to the closest point on the path:

Eapprox = ∑
k

min
t

∥∥∥pin
k −p(t)

∥∥∥2
(7)

The rendering quality is less straight forward, as it depends on the
scene geometry as well the input camera positions. We seek to esti-
mate the quality we can achieve using image-based rendering given
a particular output camera position and orientation. Let ϕk(x,y, t),
defined below, be a penalty when using the geometry proxy of in-
put camera k to render the pixel (x,y) at time t. The following ex-
pression then measures the expected quality for a particular output
frame at time t by integrating over the image space:

Φ(t) =
∫∫

min
k

ϕk(x,y, t) dxdy. (8)

We now integrate this penalty over the length of the curve to get our
rendering quality penalty term:

Equality =
∫

Φ(t) dt. (9)

How should ϕk be defined? Many possible choices have been dis-
cussed in the literature. In the Unstructured Lumigraph, Buehler et
al. [2001] provide an overview, and propose using the angular error,
i.e.:

ϕULG
k = cos−1(ŝ · û) , (10)

where

ŝ =
ck(x,y, t)−pin

k∥∥ck(x,y, t)−pin
k

∥∥ , û =
ck(x,y, t)−p(t)
‖ck(x,y, t)−p(t)‖

(11)



(a) Reprojected frame (b) Unstructured Lumigraph error (c) Texture stretch (d) Rotation invariant
texture stretch

Figure 4: Rendering quality term comparison. (b) The Unstructured Lumigraph error does does not always correlate well with visual
artifacts; it has comparable values in the two encircled areas. However, in the reprojected frame, the left area shows strong texture stretching
while the right one does not. (c-d) Directly measuring texture stretch correlates better with visual artifacts. Our new measure is invariant to
view rotations.

denote unit direction vectors between the camera centers and
ck(x,y, t), which denotes the intersection of the ray for pixel (x,y, t)
with the geometry of the proxy for input camera k (Figure 3a). Un-
fortunately, this error does not take the obliqueness of the projection
onto the proxy into account, and can associate very distorted views
with low penalties (Figure 4b).

A better measure is to directly penalize the amount of texture stretch
of the projection (Figure 4c):

ϕTS
k = 1−

mini σJ
i

maxi σJ
i
, (12)

where σJ
i are the singular values of the Jacobian of the texture co-

ordinates:

J =

 ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 . (13)

The Jacobian can be easily evaluated in a pixel shader using the
dFdx/dFdy instructions, and the singular values for the 2x2 matrix
computed using a closed form expression.

A disadvantage of this measure is that it is not invariant to the view
orientation, since in a perspective projection, the periphery of the
image is always more stretched than the center. It is preferable to
have a measure that does not change as we rotate the viewpoint,
since this allows for much more efficient optimization of the objec-
tive, as will become evident in Section 5.5.

We achieve this considering the stretch of directions (i.e., 3D unit
vectors) rather then perspective projected 2D texture coordinates
(Figure 4d). Let v1,v2,v3 be the vertices of a proxy triangle (Figure
3b). We now define the directions w.r.t. the input and output camera
positions as:

ŝi =
vi−pin

k∥∥vi−pin
k

∥∥ , ûi =
vi−p(t)
‖vi−p(t)‖

. (14)

This defines a linear mapping M = SU−1, where S =
(ŝ1, ŝ2, ŝ3), U= (û1, û2, û3). Our final IBR penalty function is thus:

ϕTS3
k = 1−

mini σM
i

maxi σM
i

, (15)

where σM
i are the singular values of M. We compute Eq. 15 in

closed form in a shader (the source code is provided in the supple-
mentary material).

The weighted sum of all these objectives gives our combined ob-
jective:

E = λ1 Elength +λ2 Esmooth-p+

λ3 Esmooth-f +λ4 Eapprox +λ5 Equality,
(16)

where λ1 =100, λ2 =100, λ3 =1000, λ4 =0.1, λ5 =0.01 are bal-
ancing coefficients (recall that the scale of the reconstructed scene
is normalized).

5.2 Optimization Strategy

Optimizing Eq. 16 directly is prohibitively expensive, since the
Equality term is expensive to evaluate. It turns out, however, that we
can greatly increase the tractability of the optimization by factoring
it into two stages.

First, we optimize the location p(t) of the path while ignoring the
energy terms that depend on the orientation f(t). While this re-
duced objective is still nonlinear, it can be efficiently optimized by
iteratively solving sparse linear subproblems, as described in Sec-
tion 5.3.

Next, we optimize the orientation f(t) of the output cameras while
keeping the previously computed position curve p(t) fixed. This
strategy dramatically improves efficiency because we designed our
proxy penalty function ϕTS3

k to be rotation invariant. This enables
us to precompute the min expression in Equation 8 once for all
directions. We describe this part of the optimization in Section 5.5.

5.3 Optimizing the Path Location

In the first stage, our goal is to optimize the path location curve p(t)
by minimizing the objectives Elength, Esmooth-p, and Eapprox, that do
not depend on the orientation. We represent p(t) as a cubic B-spline
curve, with the number of control vertices set to 5% of the number
of input frames. The reduced objective now becomes:

Elocation = λ4 ∑
k

∥∥∥pin
k −p(tk)

∥∥∥2
+

λ1

∫ ∥∥p′(t)
∥∥2 dt + λ2

∫ ∥∥p′′(t)
∥∥2 dt,

(17)

where tk = argmint
∥∥pin

k −p(t)
∥∥, is the parameter of the closest

curve point to camera k. This is a standard spline fitting problem,
which is frequently encountered in the literature.

While this is a non-linear objective, it can be efficiently solved us-
ing an iterative strategy. Note that the two integral terms in Eq. 17
have simple quadratic closed-form expressions for cubic B-splines.
Now, the solution idea is to fix tk during one iteration, which turns
Eq. 17 into a quadratic problem that can be optimized by solving
a sparse linear set of equations. The overall strategy is then to al-
ternately optimize Eq. 17 and to update the tk. Figure 5 shows a
sample mapping of input frames to their corresponding tk values
while Figure 1a shows an example of a smoothed 3D camera path.



0

200

400

600

800

1000

350 2350 4350 6350 8350 10350

Figure 5: Sample mapping from input frame numbers (horizontal
axis) to their tk values (vertical axis).

For a detailed analysis of this algorithm and more implementation
details, please see Wang et al.’s paper [2006].

5.4 Selecting Output Camera Positions Along Path

Having determined a continuous curve, p(t), that best meets our
objectives aside from orientation, we now select camera positions
along the curve. We now drop the parameter t and introduce the
subscript i to refer to output frames. The curve samples are also our
output video’s frame positions.

A constant velocity along the curve in the hyper-lapse video is
achieved by simply sampling of the curve into the desired num-
ber of output frames at evenly spaced locations along the curve in
arc-length. Alternatively, if we wish to preserve some (or all) of the
original camera velocities, we can use the mapping of input frames
to their corresponding tk values (Eq. 17) to compute a dynamic time
warp. Sampling the curve in Figure 5 at regular (horizontal) in-
tervals results in a set of non-uniformly spaced t samples that are
denser in time when the original camera was slower or stopped.

In practice, we can blend between a constant and adaptive velocity.
We show constant velocity results and an example of a variable
velocity video in Section 7 and our supplementary materials.

5.5 Optimizing the Path Orientation

We now optimize the orientation curve f(t) by minimizing the
Esmooth-f and Equality terms. The new objective becomes:

Eorientation = λ5 ∑
i

Φi(fi) + λ3 ∑
i
‖2fi− fi−1− fi+1‖2 . (18)

The key to making this optimization efficient lies in precomputing
a Φi(f) lookup table for each output camera i, which we store in a
cube map. First, at every output camera location pi, we render all
proxy geometries using an appropriate shader (see supplementary
material) and set the blending mode to compute the minimum in
the frame buffer. Repeating this process in each of the six cardinal
directions produces a cube map that stores:

ϕ̂i(f) = min
k

ϕk(f, i). (19)

Next, we compute the image integrals for the Φi(f) IBR fitness
terms using these precomputed quantities:

Φi(f) =
∫∫

I(f)
ϕ̂i(f′) df′, (20)

where I(f) indicates the set of rays f′ that are in image I, and again
store the results in cube maps (Figure 6). Since the functions in

Per-pixel orientation penalty ϕ̂i(f) Integrated orientation penalty Φi(f)

Figure 6: Look up tables for computing orientation penalties. The
green dot shows the optimized forward vector f for one of the output
frames, and the purple shape is the corresponding field of view.
The orientation optimization algorithm tries to keep the orientation
inside the feasible (dark blue) area of the second map.

Equations 19 and 20 are relatively smooth, we use a cube face
resolution of 642 and 162 pixels, respectively. This operation re-
duces evaluating the first term in Eq. 18 to a simple cube map tex-
ture fetch, and thus makes minimizing that equation extremely ef-
ficient. We use non-linear conjugate gradient with golden section
line search to optimize it [Shewchuk 1994], and compute the partial
derivatives of the cube map fetches analytically in a custom cube
map sampler.

6 Rendering

Our final stage is to render images for the novel camera positions
and orientations we discussed in the previous section. We use a
greedy algorithm to select a subset of source images from which to
assemble each output frame (Section 6.1). Then, we render each
of the selected source images and stitch the results together using a
Markov random field (MRF) and reconstruct the final images in the
gradient domain (Section 6.2).

6.1 Source Frame Selection

For every output frame, our task is to determine a handful of input
frames, which, when reprojected using their proxy geometry, cover
the output frame’s field-of-view with acceptable quality. We do this
both for efficiency and to reduce popping, which might occur if
each pixel were to be chosen from a different frame. For each out-
put camera, we can trivially determine the nearest source camera.
Unfortunately, that frame might point in a different direction than
the output frame. For this reason we have to consider a relatively
large range of input frames. In our implementation, we search over
±500 frames around the nearest source camera. We start by render-
ing weight maps for each of these candidate frames, where:

wk,i(x,y) = clamp
(

ϕk,i(x,y)− τmin

τmax− τmin
, 0, 1

)
(21)

denotes a weight for using proxy k for output frame i. τmax = 0.7
is an upper threshold above which we consider the quality “good
enough”, and τmin = 0.3 is a lower threshold below which we deem
the quality of the proxy too low to be used for rendering. For pixels
that are not covered by the proxy, we set wk,i = 0.

We now select the source frame that gives the highest overall qual-
ity:

s0 = argmax
k

∑
x,y

wk(x,y). (22)

We keep selecting the images that give us the most improvement
over the previously selected subset:

sn = argmax
k

∑
x,y

max(0, wk(x,y)−an(x,y)) , (23)



Source 1 of 5

· · ·

Source 5 of 5
Selected source frames MRF stitched

Figure 7: Source frame selection and stitching. Left: source frame selection to ensure that all pixels are adequately covered with high-quality
inputs; Right: Markov random field source pixel selection. (In practice, a spatio-temporal MRF is used—see Figure 1c.)

where an is an accumulation buffer that contains the previously se-
lected best value for every pixel:

an(x,y) = max
m<n

wsm(x,y). (24)

We keep selecting source frames in this manner until the average
improvement per pixel in Eq. 23 falls below a threshold of 0.1.

There are two more issues we need to address. First, some video
frames are poor because of camera shake-induced motion blur. Let
bk(x,y) be a per-pixel blur measure, which we obtain by low-pass
filtering the gradient magnitude of the texture of image k. We now
replace the weights used above by the following ones:

w̃k =
wkbk

maxl bl
. (25)

We also need to take the relative depths of pixels into account, to
avoid selecting occluded parts of the scene. We render depth maps
along with the weight maps, and for every pixel consider all the
depth samples that fall onto it. We now want to discard all pixels
that are occluded; however, we cannot use a strict z-buffer because
we have to account for inaccuracies in the reconstructed depths.

Instead, we apply a Gaussian mixture model [Hastie et al. 2005] to
these samples, where we determine the best number of Gaussians
using the Bayesian information criterion [Schwarz 1978]. This es-
sentially gives us a classification of the depths into one or several
layers. We can now safely set the weights of every pixel not on the
front layer to zero.

The above process selects on average 3 to 5 source frames for ev-
ery output frame. While this is done independently for every output
frame, we observe in practice that similar source frames are selected
for nearby output frames. This is important for achieving more tem-
porally coherent results when rendering. We encourage this even
further by allowing every selected source to be not only used for
the frame it was selected in, but also the surrounding ±8 frames.
However, in these extra frames we multiply the weight maps with a
global attenuation coefficient that linearly drops to zero at the edges
of the ±8 frame window (indicated by the gray values in Figure 8).
The attenuation tends to reduce popping artifacts in the stitching.

6.2 Fusion

Our last remaining task is to stitch and blend the previously se-
lected source frames together to obtain the final output frames. We
first optimize a discrete pixel labeling, where every (space-time)
pixel p in the output video chooses the label αp from one of the

Figure 8: Frame selection for the CLIMBING video. This image
schematically shows (in black) which of the 331 source frames
(rows) are used in each of the 636 output frames.

rendered source proxies that have been selected for that particular
frame [Agarwala et al. 2004]. We define the objective:

min
{αp}

∑
p

Ed(p,αp)+λs-s ∑
p,q∈N(p)

Es(p,q,αp,αq)+

λs-t ∑
p,q∈T (p)

Es(p,q,αp,αq),
(26)

where the “data” term Ed(p,αp) = 1−wαp(p) encourages select-
ing high quality pixels, the “smoothness” terms Es, defined below,
encourage invisible stitch seams, λs-s = 10, and λs-t = 0.1. N(p)
denotes the set of 4-neighbors within the same output frame, and
T (p) denotes the two temporal neighbors in the previous and next
frames, which generally will not lie at the same pixel coordinates,
and which we obtain by computing the medoid of the motion vec-
tors of all candidate proxies at the given pixel).

Our smoothness terms are defined following previous work [Agar-
wala et al. 2004]:

Es(p,q,αp,αq) =
∥∥tαp(p)− tαq(p)

∥∥+∥∥tαp(q)− tαq(q)
∥∥ , (27)

where tαp(p) denotes the RGB value of the rendered proxy at
pixel p. We solve Eq. 26 in a greedy fashion by successivly optimiz-
ing single frames while keeping the previously optimized frames
fixed. Each frame’s labels are optimized using the alpha expansion
algorithm [Kolmogorov and Zabih 2004] in a coarse-to-fine manner
[Lombaert et al. 2005].

The optimized labeling hides visible seams as much as possible.
However, there might still be significant color differences because
of exposure and white balancing changes in the source frames. We



BIKE 1

CLIMBING

BIKE 2

SCRAMBLING

BIKE 3

WALKING

Figure 9: Sample rendered output frames from our six test videos

Name
Duration

mm:ss
Input

Frames
Output
Frames

BIKE 1 6:00 10,787 1111
BIKE 2 3:55 7,050 733
BIKE 3 13:11 23,700 2189
SCRAMBLING 9:07 16,400 1508
CLIMBING 3:37 6,495 636
WALKING 9:36 17,250 1744

Table 1: Processed video statistics: activity and clip number, input
duration (minutes and seconds), input frame count, output frame
count.

balance out these differences by solving a spatio-temporal Poisson
reconstruction problem to obtain our final pixels r:

min
r ∑

p
λb-d

(
r(p)− tαp(p)

)2
+

λb-s

((
∆xr(p)−∆xtαp(p)

)2
+
(
∆yr(p)−∆ytαp(p)

)2
)
+

λb-t
(
∆ir(p)−∆itαp(p)

)2
,

(28)
where ∆x, ∆y, and ∆i denote the horizontal, vertical, and tempo-
ral finite forward difference operator, respectively. λb-d = 0.001,
λb-s = 1, and λb-t = 0.01 are balancing coefficients. We solve Eq. 28
in a reduced domain using multi-splines with a spacing of 32 pixels
[Szeliski et al. 2011] using a standard conjugate gradients solver
[Shewchuk 1994].

7 Results and Evaluation

We present our experimental results on six video sequences ac-
quired with GoPro Hero2 and Hero3 cameras. All of the videos
were taken in a single shot and captured at 29.97 frames per second
with a resolution of 1280×960 pixels. Table 1 lists the sequences,
which are described by their activities and clip numbers, their in-
put duration and frame number, and the number of output frames.
The videos are between 3 and 13 minutes in length, and the output

Stage Computation time
Match graph (kd-tree) 10-20 minutes
Initial SfM reconstruction 1 hour (for a single batch)
Densification 1 hour (whole dataset)
Path optimization a few seconds
IBR term precomputation 1-2 minutes
Orientation optimization a few seconds
Source selection 1 min/frame (95% spent in GMM)
MRF stitching 1 hour
Poisson blending 15 minutes

Table 2: Approximate computation times for various stages of the
algorithm, for one of the longer sequences, BIKE 3

videos have a decimation (speed-up) factor of roughly 10×, a value
that provides significant speed-up while still providing enough con-
text to follow the motion.

Figure 9 shows a sample rendered output frame from each of the six
videos. Our supplementary materials show the complete rendered
videos (downsampled to 720 pixel width). We also show compar-
isons to more naı̈ve methods to produce the same output length as
our method. We include one rendered video where instead of using
a constant camera velocity, we adapt the velocity to mimic that of
the original camera motion, as described in Section 5.4.

As can be seen from these videos, our technique does an excellent
job of providing fluid camera motion while minimizing rendering
artifacts. The remaining artifacts are caused by errors in the proxy
geometry due to nearby objects, independently moving objects, and
wide changes in exposure, which the Poisson blend could not dis-
guise. Some additional artifacts are due to sudden camera move-
ments, errors in the reconstruction due to rolling shutter artifacts,
and motion blur, despite our efforts to not use such frames for the
rendering.

Computation Times. Several components of the hyper-lapse
construction are computationally expensive, such as SfM recon-
struction and spatio-temporal MRF stitching and Poisson blend-



Low pass filtering Taubin’s method Snavely’s method

Figure 10: Simple smoothing algorithms cannot produce satisfactory camera paths. The original camera path is shown in blue, our path in
red, and the alternative path in black. Left: Low pass filtering the input camera positions produces a path that is over-smoothing in some
part while it still contains sudden turns in other parts. Middle: Taubin’s method [Taubin et al. 1996] runs into numerical problems. Right:
The pull-back term in Snavely et al’s algorithm [2008] prevents reaching a smooth configuration.

ing. In this work, we were more interested in building a proof-
of-concept system rather than optimizing for performance. As a
result, our current implementation is slow. It is difficult to measure
the exact timings, as we distributed parts of the SfM reconstruction
and source selection to multiple machines on a cluster. Table 2 lists
an informal summary of our computation times. We expect that
substantial speedups are possible by replacing the incremental SfM
reconstruction with a real-time SLAM system [Klein and Murray
2009], and finding a faster heuristic for preventing selecting of oc-
cluded scene parts in the source selection. We leave these speed-ups
to future work.

7.1 Evaluating Alternatives

We experimented with a number of alternatives at each stage of the
pipeline. Here, we outline some of those results.

Global 3D Model Reconstruction. We experimented with ap-
plying CMVS/PMVS [Furukawa and Ponce 2010], a state-of-the-
art 3D reconstruction algorithm, to our input video and then ren-
dering this model along our newly computed camera path. As can
be seen in the bike1 dense recon.mp4 video, difficulties in
reconstructing textureless and moving areas cause the algorithm to
produce only a partial model, which cannot achieve the degree of
realism we are aiming for with our hyper-lapse videos.

Path Planning. Some alternatives to our path planning results
can be seen in Figure 10. As described in Section 5, we first exper-
imented with low-pass smoothing the original camera poses. How-
ever, we found that there is no setting that reaches a good solution
everywhere. In some regions, the path remains too noisy while in
others, it oversmooths sharp turns with the same settings. Taubin’s
method [1996] is designed to smooth without the “shrinkage” prob-
lems. However, it runs into numerical problems before achieving
sufficient smoothing. Snavely et al. [2008] use a variant of low-
pass filtering that employs a pull-back term, which prevents the
curve from moving too far away from the input curve. However,
if this term is weighted too high, it prevents smoothing, while if
it is weighted lower, it suffers from the same problems as regular
low-pass filtering.

Video Stabilization. As mentioned in our introduction, we also
experimented with traditional video stabilization techniques, ap-
plying the stabilization both before and after the naı̈ve time-lapse
frame decimation step. We tried several available algorithms, in-

cluding the Warp Stabilizer in Adobe After Effects, Deshaker1, and
the Bundled Camera Paths method [Liu et al. 2013]. We found that
they all produced very similar looking results and that neither vari-
ant (stabilizing before or after decimation) worked well, as demon-
strated in our supplementary material. We also tried a more so-
phisticated temporal coarse-to-fine stabilization technique that sta-
bilized the original video, then subsampled the frames in time by
a small amount, and then repeated this process until the desired
video length was reached. While this approach worked better than
the previous two approaches (see the video), it still did not produce
as smooth a path as the new technique developed in this paper, and
significant distortion and wobble artifacts accumulated due to the
repeated application of stabilization.

8 Conclusions

In this paper, we have shown how to create smooth hyper-lapse
videos from casually captured first-person video. We leverage
structure-from-motion methods to operate on very long sequences
by clustering the input, solving a series of sub-problems, and merg-
ing results. We also densify the resulting point clouds in a second
pass and then interpolate depth maps per input frame. This provides
the input to a new path planning algorithm for the output hyper-
lapse camera.

We have developed a new view-independent quality metric that ac-
counts for foreshortening induced by texture-mapping source im-
ages onto final views. This novel metric is integrated into the path
planning objective and results in a path that is both smooth and
optimally placed and oriented to be renderable from the available
input frames. Finally, each output frame is rendered from carefully
selected source frames that are most capable of covering the frame
as defined by the path planning. The source frames are stitched and
blended to create the final frames. Our pipeline produces smooth
hyper-lapse videos while limiting the need for severe cropping. The
resulting videos could not be achieved by any existing method.

That said, there are many avenues to continue improving the results.
We have generally relied on L2 metrics for smoothness and stability.
As Grundmann et al. [2011] showed, the use of L1 measures often
results in more natural stabilization results. Exploring such met-
rics throughout our process may result in even more natural feeling
hyper-lapses. Also, the rolling shutter used in almost all modern
video cameras causes a variety of wobble artifacts. Some recently
reported work, such as Liu et al. [2013], should be applied to the
input sequence before further processing. As stereo and structure-
from-motion codes continue to improve, we hope to eliminate some

1http://www.guthspot.se/video/deshaker.htm

http://www.guthspot.se/video/deshaker.htm


of the remaining artifacts caused by nearby surfaces, thin structures,
and moving objects.

As the prevalence of first-person video grows, we expect to see a
greater demand for creating informative summaries from the typi-
cally long video captures. Our hyper-lapse work is just one step for-
ward. As better semantic understanding of the scene becomes avail-
able, either through improved recognition algorithms or through
user input, we hope to incorporate such information, both to ad-
just the speed along the smoothed path, the camera orientation, or
perhaps to simply jump over uninformative sections of the input.
Finally, we look forward to being surprised by the many new and
exciting videos of adventures recorded with first-person video sys-
tems.

References

AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER,
S., COLBURN, A., CURLESS, B., SALESIN, D., AND COHEN,
M. 2004. Interactive digital photomontage. ACM Trans. Graph.
23, 3, 294–302.

BEARDSLEY, P., TORR, P., AND ZISSERMAN, A. 1996. 3D model
acquisition from extended image sequences. In Fourth European
Conference on Computer Vision (ECCV’96), Springer-Verlag,
vol. 2, 683–695.

BUEHLER, C., BOSSE, M., MCMILLAN, L., GORTLER, S., AND
COHEN, M. 2001. Unstructured lumigraph rendering. Proceed-
ings of SIGGRAPH ’01, 425–432.

CHEN, F., COOPER, M., AND ADCOCK, J. 2007. Video summa-
rization preserving dynamic content. In Proceedings of the Inter-
national Workshop on TRECVID Video Summarization, ACM,
New York, NY, USA, TVS ’07, 40–44.

CRANDALL, D., OWENS, A., SNAVELY, N., AND HUTTEN-
LOCHER, D. 2013. SfM with MRFs: Discrete-continuous op-
timization for large-scale reconstruction. IEEE Transactions on
Pattern Analysis and Machine Intelligence 35, 12, 2841–2853.

DETYNIECKI, M., AND MARSALA, C. 2008. Adaptive accelera-
tion and shot stacking for video rushes summarization. In Pro-
ceedings of the 2Nd ACM TRECVid Video Summarization Work-
shop, ACM, New York, NY, USA, TVS ’08, 109–113.

FURUKAWA, Y., AND PONCE, J. 2010. Accurate, dense, and ro-
bust multi-view stereopsis. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 32, 8, 1362–1376.

GOLDSTEIN, A., AND FATTAL, R. 2012. Video stabilization using
epipolar geometry. ACM Trans. Graph. 32, 5.

GRUNDMANN, M., KWATRA, V., AND ESSA, I. 2011. Auto-
directed video stabilization with robust l1 optimal camera paths.
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J., AND FRANKLIN, J.
2005. The elements of statistical learning: data mining, inference
and prediction. The Mathematical Intelligencer 27, 2, 83–85.

HORN, B. K. P. 1987. Closed-form solution of absolute orientation
using unit quaternions. Journal of the Optical Society of America
A 4, 4, 629–642.

KLEIN, G., AND MURRAY, D. 2009. Parallel tracking and map-
ping on a camera phone. International Symposium on Mixed and
Augmented Reality (ISMAR 2009).

KOLMOGOROV, V., AND ZABIH, R. 2004. What energy functions
can be minimized via graph cuts. IEEE Transactions on Pattern
Analysis and Machine Intelligence 26, 65–81.

LIU, F., GLEICHER, M., JIN, H., AND AGARWALA, A. 2009.
Content-preserving warps for 3d video stabilization. ACM Trans.
Graph. 28, 3, article no. 44.

LIU, F., GLEICHER, M., WANG, J., JIN, H., AND AGARWALA,
A. 2011. Subspace video stabilization. ACM Trans. Graph. 30,
1 (Feb.), 4:1–4:10.

LIU, S., YUAN, L., TAN, P., AND SUN, J. 2013. Bundled camera
paths for video stabilization. ACM Transactions on Graphics
(Proc. SIGGRAPH 2013) 32, 4, article no. 78.

LOMBAERT, H., SUN, Y., GRADY, L., AND XU, C. 2005. A mul-
tilevel banded graph cuts method for fast image segmentation.
IEEE International Conference on Computer Vision (ICCV’05),
259–265.

MATSUSHITA, Y., OFEK, E., GE, W., TANG, X., AND SHUM, H.-
Y. 2006. Full-frame video stabilization with motion inpainting.
IEEE Transactions on Pattern Analysis and Machine Intelligence
28, 7, 1150–1163.

MONEY, A. G., AND AGIUS, H. 2008. Video summarisation: A
conceptual framework and survey of the state of the art. Journal
of Visual Communication and Image Representation 19, 2, 121
– 143.

NOCEDAL, J., AND WRIGHT, S. J. 2000. Numerical Optimization.
Springer.

SCARAMUZZA, D., MARTINELLI, A., AND SIEGWART, R. 2006.
A toolbox for easily calibrating omnidirectional cameras. Pro-
ceedings of IEEE International Conference on Intelligent Robots
and Systems (IROS 2006), 5695–5701.

SCHWARZ, G. 1978. Estimating the Dimension of a Model. The
Annals of Statistics 6, 2, 461–464.

SHEWCHUK, J. R. 1994. An introduction to the conjugate gradient
method without the agonizing pain. Tech. rep., Carnegie Mellon
University.

SNAVELY, N., SEITZ, S. M., AND SZELISKI, R. 2006. Photo
tourism: Exploring photo collections in 3d. ACM Transactions
on Graphics (Proc. SIGGRAPH 2006) 25, 3, 835–846.

SNAVELY, N., GARG, R., SEITZ, S. M., AND SZELISKI, R. 2008.
Finding paths through the world’s photos. ACM Transactions on
Graphics (Proc. SIGGRAPH 2008) 27, 3, article no. 15.

SZELISKI, R., UYTTENDAELE, M., AND STEEDLY, D. 2011. Fast
poisson blending using multi-splines. International Conference
on Computational Photography (ICCP 11).

TAUBIN, G., ZHANG, T., AND GOLUB, G. 1996. Optimal surface
smoothing as filter design. In Fourth European Conference on
Computer Vision (ECCV’96), Springer-Verlag, vol. 1, 283–292.

WANG, W., POTTMANN, H., AND LIU, Y. 2006. Fitting b-spline
curves to point clouds by curvature-based squared distance min-
imization. ACM Trans. Graph. 25, 2, 214–238.

WU, C. 2013. Towards linear-time incremental structure from
motion. In International Conference on 3D Vision (3DV).


