
Quality Prediction for Image Completion

Johannes Kopf
Microsoft Research

Wolf Kienzle
Microsoft Research

Steven Drucker
Microsoft Research

Sing Bing Kang
Microsoft Research

Input panorama and quality prediction
(brighter is higher quality)

Full completion

Best crop using only “known” pixels (“conservative crop”) Our optimized crop based on quality prediction

Figure 1: Our data-driven technique is capable of predicting image completion quality (top left) before the completion is actually computed
(top right). Based on our prediction, we compute an optimal crop rectangle that tries to include as many known pixels as possible while
avoiding low-quality regions (bottom right). Compared to previous cropping approaches that do not fill in (bottom left) we can usually
include a larger amount of the input image in our crop. Our algorithm only completes the cropped region, thus saving a significant amount
of computation compared to full completion.

Abstract

We present a data-driven method to predict the quality of an image
completion method. Our method is based on the state-of-the-art
non-parametric framework of Wexler et al. [2007]. It uses auto-
matically derived search space constraints for patch source regions,
which lead to improved texture synthesis and semantically more
plausible results. These constraints also facilitate performance pre-
diction by allowing us to correlate output quality against features
of possible regions used for synthesis. We use our algorithm to first
crop and then complete stitched panoramas. Our predictive ability
is used to find an optimal crop shape before the completion is com-
puted, potentially saving significant amounts of computation. Our
optimized crop includes as much of the original panorama as pos-
sible while avoiding regions that can be less successfully filled in.
Our predictor can also be applied for hole filling in the interior of
images. In addition to extensive comparative results, we ran several
user studies validating our predictive feature, good relative quality
of our results against those of other state-of-the-art algorithms, and
our automatic cropping algorithm.

Links: DL PDF WEB

1 Introduction

Image completion or inpainting is a popular image editing tool for
object removal and replacement or digital photograph restoration.
A variety of completion algorithms have been developed in the sci-
entific community over the past decade, and image completion is
now a feature in commercial photo editing software such as Adobe
Photoshop. In most previous work, image completion is used to fill
holes after unwanted objects are removed. The same algorithms,
however, can also be used to extend an image beyond its original
boundaries. This is useful for filling beyond the irregular bound-
aries of a stitched panorama—this application is the focus of this
paper.

Casually shot panoramas often have irregular boundaries (e.g., Fig-
ure 1). Most users, however, prefer output images with rectangu-
lar boundaries. The trivial solution implemented by most stitching
software is to crop to the largest box that is fully contained within
the panorama. This simple method often removes large parts of the
input. The alternative is to apply any existing completion algorithm
to fill the missing regions of the panorama bounding box.

Unfortunately, all existing image completion algorithms fail on oc-
casion; the failure typically shows up as either inability to synthe-
size some textures well or results that are semantically implausible
(see Figure 2). In addition, it is difficult to anticipate when and
where such algorithms will fail given an arbitrary input image.

In this paper, we use machine learning to predict the quality of im-
age completion. To support this prediction, we design our image
completion algorithm to produce high quality results and to allow
associations between completed pixels and known pixels to be cre-
ated. We build on the existing non-parametric optimization frame-
work of Wexler et al. [2007] (which is also implemented in the
Content Aware Fill feature of Adobe Photoshop1). Previous work
showed that this algorithm performs best if the source locations

1see http://www.adobe.com/technology/projects/content-aware-fill.html

http://doi.acm.org/10.1145/2366145.2366215
http://portal.acm.org/ft_gateway.cfm?id=2366215&type=pdf
http://research.microsoft.com/en-us/um/people/kopf/completion/

for patches are constrained to certain areas, e.g., see [Barnes et al.
2009]. We use a heuristic that automatically derives search space
constraints based on overlapping texture segmentation. These con-
straints allow us to design a simple method to predict algorithm
performance. Based on the prediction we compute a crop shape be-
fore the completion is actually carried out, avoiding unnecessarily
completing cropped pixels.

To validate and train our prediction function, we ran a Mechan-
ical Turk user study to obtain about 9,500 “good” / “bad” labels
on crops from completed images from a large number of subjects.
These labels are used to estimate our prediction function via cross-
validation. We tested our algorithm on an extensive collection of
input images, and in another user study, compared our results with
those of various state-of-the-art completion algorithms. In yet an-
other user study, we evaluated the performance of our automatic
crop optimization. In addition to the examples included in this pa-
per, all of our results and comparisons are included in the supple-
mentary material.

2 Previous Work

While there is a substantial amount of previous work on image com-
pletion (also referred to as inpainting or image filling), to the best
of our knowledge, we are not aware of any methods that can pre-
dict quality before completion. Being able to predict quality would
allow the system to determine if the input image can be properly
restored or edited, or in our case, estimate the desired crop of a
panorama. As a result, the system completes only what is needed.
Note that existing cropping techniques such as that of [Zhang et al.
2005] use only available image data for cropping.

Texture quality assessment techniques are the closest ap-
proaches to ours. The objective function of Kwatra et al. [2005]
measures similarity of local patches to the target texture, but this
measure is a poor predictor of quality (as shown in Section 5).
Swarmy et al. [2011] show that a linear combination of image pa-
rameters (such as intensity mean, variance, entropy, and band infor-
mation) can be used to assess texture quality. In both cases, how-
ever, the texture has to be generated first.

We now briefly survey representative methods for image comple-
tion, which we classify as primarily example-based or diffusion-
based. Komodakis and Tziritas [2007] provided an excellent review
of inpainting techniques.

Diffusion-based techniques, often referred to as “inpainting,”
typically work well for small or narrow holes, e.g., for removing
scratches from a scanned old photograph. They are less appropri-
ate for completing stitched panoramas with large open-ended miss-
ing regions due to their inability to synthesize textures. One good
representative of diffusion-based techniques is that of Bertalmio
et al. [2000]; it prolongs isophote lines in the missing areas.

Example-based techniques tend to be more effective for fill-
ing larger holes than diffusion-based techniques. Efros and Le-
ung [1999] popularized the use of non-parametric sampling for
texture synthesis (and by extension, image completion). Many
example-based techniques are based on this core concept. Repre-
sentative techniques include block-based matching with structure-
based priority [Criminisi et al. 2003], use of hierarchical filter-
ing as initialization and adaptive regions instead of patches [Drori
et al. 2003], optimization of a texture energy function [Wexler et al.
2007; Kwatra et al. 2005; Darabi et al. 2012], application of user
specification of structure [Sun et al. 2005], MRF with exemplars
as sample labels [Komodakis and Tziritas 2007], and search for
globally-transformed patches [Mansfield et al. 2011].

Kawai et al. [2008] adapted the work of Wexler et al. [2007] using
an SSD-based objective function to handle regular (fine-grained)
textures. In addition, they compensate for local brightness changes
by linearly fitting the intensity of the matched patch.

Pritch et al. [2009] cast the problem of image synthesis as finding an
optimal shift-map of pixels based on global factors (such as image
size and object arrangement) and local features (such as saliency
map) as well as spatial regularization. They have demonstrated their
technique on image retargeting, rearrangement, and completion.

Many of the previous methods rely on quickly finding similar im-
age patches. The recent PatchMatch algorithm [Barnes et al. 2009]
greatly improves their speed by replacing the previously employed
tree-based search techniques with a much faster randomized algo-
rithm.

Practically all the automatic techniques that rely on exemplars (with
the exception of [Matsushita et al. 2006]) do not restrict their
search. As a result, such techniques are prone to the same prob-
lems as those of [Wexler et al. 2007], where perceptually implausi-
ble patches could be used for image completion. In addition, they
were not designed with performance prediction in mind. It is diffi-
cult to anticipate the degree of success or failure within the missing
regions.

3 Overview

Our algorithm builds on the non-parametric optimization algorithm
introduced by Wexler et al. [2007]. We implemented the optimiza-
tion as described in that paper using the weighted average updating
rule (we did not find it necessary to use the much slower mean-shift
based updating rule). We describe more implementation details of
the algorithm in a supplementary document.

We bias our algorithm toward continuing image content near the
boundary into the missing region. Each missing pixel may only be
filled from a tightly constrained part of the known region. Knowing
in advance where every missing pixel may come from enables us to
predict the perceived quality of the completed result. Using training
data, we learn a function that maps low-level features of the clos-
est known image regions to the perceived quality of the completed
result. The low-level features include color, edge density, edge ori-
entation, contour length, and region size. Our prediction function
is learnt and validated from data that we collected in a Mechanical
Turk user study, where subjects were asked to categorize random
patches from the completed regions as “good” or “bad”.

In the next section, we review the optimization framework that our
algorithm is based on and then describe our extension that improves
the result quality and makes the algorithm more predictable.

4 Image Completion Algorithm

Our algorithm minimizes a “texture energy” term which measures
the extent to which the synthesized region deviates from the known
region over a set of overlapping local patches. The basic form of
the energy minimization problem is

min
{ti,si}

∑
i∈Ω

‖ti − si‖ , (1)

where Ω is the set of center pixels of all 7×7 patches that are com-
pletely contained within the image domain and overlap at least one
missing pixel. By “image domain,” we mean the minimum bound-
ing box containing the panorama. ti denotes a (target) patch cen-
tered at pixel i, and si is a (source) patch in the known region K
that is close in appearance to ti.

Input and prediction (brighter is higher quality) Our algorithm unconstrained

Adobe Photoshop CS5 (Content Aware Fill) Our Algorithm with automatic constraints

Figure 2: Unguided image completion often produces semantically implausible results. Please zoom into the PDF to see details. Note the
artifacts in the top left corner and near the bottom. Both ours and Photoshop’s implementation of [Wexler et al. 2007] synthesized the wrong
rock texture and snow patches into the sky. In previous work these issues have been addressed by using manual search space constraints.
We propose a fully automatic algorithm to derive such constraints. Our result, while not artifact free, appears more plausible. Many more
examples can be found in the supplementary material.

The energy is minimized in an iterative fashion, alternating between
minimizing with respect to set of ti or si while the other set is
fixed. Minimizing the si assignments requires finding the near-
est neighbor for each synthesized patch ti. This task is the most
compute-intensive, and requires using approximative techniques to
keep the run time reasonable (we use the PatchMatch algorithm
[Barnes et al. 2009]). Minimizing ti amounts to a simple averaging
of the overlapping si assignments. Our results are computed in a
coarse-to-fine fashion using an image pyramid. For details, please
refer to [Wexler et al. 2007] and the pseudo-code in the supplemen-
tary material.

4.1 Automatic search space constraints

This completion algorithm is prone to getting stuck in bad local
minima, and is sensitive to its initial state. The most successful
applications start with initializations that are already close to the
final result: image retargeting [Simakov et al. 2008] uses a scaled
copy of the input, while image reshuffling [Barnes et al. 2009] starts
from a copied known region. In both cases, the amount of repair is
small. For plain image completion the algorithm is typically initial-
ized randomly, which makes the quality of the results hard to pre-
dict. Without a random initialization the algorithm tends to exhibit
quality issues such as blurry/incorrect textures and semantically im-
plausible results, as shown in Figure 2.

Certain algorithms are manually guided toward better solutions
by either constraining the locations of some pixels (e.g., [Barnes
et al. 2009]) or specifying structure (e.g., [Sun et al. 2005]). In
other works, the search space is constrained using simple heuristics.

Pérez et al. [2004] restrict the source region to a band of constant
radius around the missing region. However, this simple solution
is problematic: if the radius is too small, not enough data can be
sampled for effective completion, which may result in repetitions;
if the radius is too large, the results will suffer from the same prob-
lems as observed in the unconstrained result in Figure 2. Bornard
et al. [2002] describe a more localized heuristic. For every missing
pixel they restrict the search space to the smallest centered window
that contains at least a certain number of known pixels. While this
largely avoids the problem of selecting incorrect textures the win-
dows are still not well adapted to the image content.

We use a similar heuristic, which uses texture segmentation to se-
lect large restriction regions with relatively homogeneous content,
in order to facilitate predictability and to achieve continuation of
semantic regions. We considered using image segmentation tech-
niques [Jia and Tang 2003], however, it is difficult to control the
granularity of the resulting segments. In addition, these segments
are non-overlapping, which might lead to artifacts in the form of
artificial hard edges in the result.

Instead, we oversegment into superpixels and then associate each
superpixel with a cluster of similar superpixels surrounding it.
These clusters are homogeneous and overlapping as desired. We
experimented with several superpixel algorithms including normal-
ized cuts [Yu and Shi 2003] and graph-based based segmenta-
tion [Felzenszwalb and Huttenlocher 2004]. It turned out that the
added complexity of these algorithms was not necessary for achiev-
ing good results; instead, we partition the entire image into non-
overlapping square tiles, each being 16×16 pixels. There are three

Figure 3: Computation of search space constraints. The image is
partitioned into square tiles, the white area is part of the missing
region. Left: boundary tiles (dark), known and missing tiles (light).
Right: for the dark missing tile the closest boundary tile is shown
in blue. The red and green boundary tiles are within 1.5× distance
of the closest boundary tile. Their respective segments are outlined
in red, green, and blue. The union of all three segments yields the
restricted search space (outlined with dashed black line).

(non-disjunct) categories of tiles: boundary tiles overlap or touch
the known image boundary, known tiles contain at least one known
pixel, and missing tiles contain at least one missing pixel (Figure
3a). Note that each boundary tile is also either “known”, “miss-
ing”, or both.

For every boundary tile, we compute a “segment” comprising of
surrounding known tiles of sufficiently similar texture (decribed in
the next paragraph). Next, we associate with each missing tile a
restriction region that is formed as the union of several overlapping
segments. This union contains the segments of all boundary tiles
within 1.5 times the distance of the closest boundary tile. We asso-
ciate every pixel within a missing tile with the restriction region of
that tile. This algorithm has the desired effect of producing small
restriction regions near to the image boundary, forcing the comple-
tion to continue semantic regions, whereas further away from the
boundary it results in larger restriction regions giving the comple-
tion algorithm more freedom. It works both for holes on the outside
of the image (panoramas) and in the interior of the image. The al-
gorithm is illustrated in Figure 3, right.

For computing the homogeneous segments around boundary tiles,
we consider the tiles as a four-connected grid graph. Each edge is
weighted by the affinity of the attached tiles, computed as the Earth
Mover’s distance (EMD) of their color histograms (one 16-bin his-
togram per channel). We also tried χ2 and Euclidean distance but
achieved slightly better results using EMD. For each boundary tile,
we compute the shortest distance path to every other tile using Di-
jkstra’s algorithm. We define the segment as the union of all tiles
whose distance is smaller than the threshold τ = 5 (the distance
between two bins in the EMD is set to 1). If the segment has fewer
than 32 tiles, the threshold is automatically adjusted to select at least
32 tiles.

4.2 Evaluation

We conducted a user study with 13 participants (3 female and 10
male). We tested our algorithm against three competitors: our algo-
rithm without automatic search space constraints, Adobe Photoshop
CS5’s Content Aware Fill, and Resynthesizer2, a popular plugin for
the GIMP image editor. Mechanical Turk was not used because of
the high resolution display requirement. Each participant was pre-
sented with 60 pairs of images on two monitors (each image was
shown on a full 24” diagonal monitor). 30 of these images were

2http://www.logarithmic.net/pfh/resynthesizer

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Our vs. Unconstrained Our vs. Photoshop Our vs. Resynthesizer

Our Algorithm
No Preference
Other Algorithm

Our vs. unconstrained Our vs. Photoshop Our vs. Resynthesizer
χ2(2, 260) = 46.92 χ2(2, 260) = 63.70 χ2(2, 260) = 74.68

p < 0.0001∗ p < 0.0001∗ p < 0.0001∗
∗ shows statistically significant result.

Figure 4: Results of the user study comparing our algorithm
against several other state-of-the-art algorithms.

panoramas with holes on the outside, and the other 30 had holes in
the interior of the image. The ordering was pseudo-randomly var-
ied such that each participant compared our algorithm against 20
examples from each of the other techniques. Results are shown in
Figure 4. A χ2 analysis between each condition indicates that our
algorithm was significantly preferred over each of the other tech-
niques.

5 Quality Prediction

The automatic search space constraints are designed in part to fa-
cilitate prediction of quality. In this section, we describe how we
generate the prediction function that maps a given missing pixel to
a measure of perceptual quality.

The data used to learn the prediction function was obtained using
Mechanical Turk. From a set of 125 completed panoramas, we ran-
domly selected 64×64 squares with at least half missing pixels and
marked them with red bounding boxes in the image. We cropped
380×380 regions around the squares to provide visual context and
asked subjects to rate the completion in the square as either “good”
or “bad”. We generated 1,500 batches with twelve questions each.
Each batch contained ten real questions and two control questions
with obvious answers. These control questions enabled us to prune
subjects who were not performing the task properly, a common
problem on Mechanical Turk. A subject is considered invalid if
fewer than 80% of the control questions were incorrectly answered.
After pruning, we have 66 valid subjects (down from 117 subjects),
generating a total of 8,738 “good” and 802 “bad” labeled examples
of completed regions. The last two numbers suggest that, on aver-
age, users will find about 92% of our filled-in regions “good”, i.e.,
plausible-looking.

We use the labeled data to learn a function that predicts the per-
ceived quality of a completed missing region. Recall that each miss-
ing pixel i is constrained to come from a certain restriction region
Ri =

⋃
Sj , composed as the union of several homogeneous seg-

ments Sj . Our prediction function learns the correlation between
the perceived quality of a completed pixel and some low-level fea-
tures of the segments comprising the restriction region.

The feature vector uj of a segment Sj has the following compo-
nents: color histograms (separate for each channel), edge density
(percentage of pixels that are edge pixels), edge orientation his-
togram, and histograms of contour and straight line lengths. Each
histogram is characterized by its entropy, mean, and standard de-
viation. We provide additional implementation details in a supple-
mentary document.

The feature vector vi of a missing pixel i is defined as:

vi =


∑

j ajuj/
∑

j aj
xi
yi
di
bi

 , (2)

where xi, yi are the image coordinates of the missing pixel (nor-
malized so that each ranges between 0 and 1), di is its distance to
the boundary of the nearest known region, aj is the size of segment
j, and bi is the area of Ri (typically smaller than

∑
j aj , as can be

deduced from Figure 3).

Let ti be the label of pixel i (“good” = 1 or “bad” =−1). Our goal is
to construct a function f(vi) that predicts the unknown label from a
feature vector vi. We use Gentle AdaBoost [Friedman et al. 2000],
a standard machine learning algorithm for binary classification, to
combine our feature vector into a scalar quality prediction. The
prediction function has the form

f(vi) =

m∑
k=1

hk(vi), (3)

which is a sum of m regression stumps

hk(vi) =

{
lk if vek

i > tk
rk otherwise , (4)

where vek
i denotes the ekth element of the feature vector vi. Gentle

AdaBoost determines the model parameters ek, tk, lk, and rk by
solving the problem

min
f

∑
i∈T

exp(−tif(vi)), (5)

which penalizes positive values of f on “bad” examples and neg-
ative values on “good” that examples. Here, T denotes the set of
labeled training examples. The number of regression stumps m is
a design parameter of the learning algorithm. It is set empirically
by cross-validation: we randomly split the training data into five
validation folds, and then for each fold learn a prediction function
using the data from the remaining four training folds. The average
prediction performance on the five validation folds provides an esti-
mate of the generalization performance of the model. We repeated
this process for m = 1, . . . , 128 and found that the performance
increased with m until about m = 32, and then leveled off.

Figure 5 illustrates the effectiveness of the learning approach. The
discriminative power of our learned predictor f is higher than any
feature taken by itself (the individual elements of vi). As an aside,
we also tested the pixel-wise energy Eq. 1 as a feature, but found it
to be a poor quality predictor (AUC = 0.53, standard error: 0.006)
compared to our dedicated quality features (Eq. 2, AUC = 0.77).
Please note that this evaluation and all other results presented here
were computed on images that were not part of the training set. We
show examples of our quality prediction throughout the paper and
in the supplementary material.

The quality predictions f(vi) are in arbitrary units. To make the
quality parameter in our method more intuitive, we transform the
quality predictions into probabilities using Platt’s method [1999].
This method constructs a sigmoid mapping from the raw quality
predictions f(vi) to estimates of “good” or “bad” label probabili-
ties, pi ∈ [0; 1]. Note that since f is a sum of regression stumps
both f and pi are real-valued and piecewise constant. pi is very fast
to compute, since it requires only m = 32 compare-adds per pixel.

6 Automatic Cropping Algorithm

We use our prediction function to compute an optimal crop shapeC
that includes as many of the known pixels as possible while avoid-

Figure 5: ROC (receiver operating characteristic) curves for our
learned prediction function vs. the five most predictive individual
features (out of 21). The area under the ROC curve (AUC) measures
discriminability of each predictor. AUC = 0.5 denotes chance level,
AUC = 1.0 indicates perfect discrimination.

ing pixels that are predicted as low quality. These objectives are
achieved by solving the optimization problem

min
C

∣∣C ∩K∣∣ subject to µp(C) =
1

|C|
∑
i∈C

pi ≥ τp, (6)

where C denotes the region outside the crop shape, and µp(C) is
the average predicted quality inside the crop shape (pi = 1 for
known pixels). The solution minimizes the number of excluded
known pixels while ensuring a minimum average probability τp in-
side the crop shape.

The parameter τp balances between the two high-level objectives:
higher values lead to more aggressive crops, since less potentially
low-quality areas are allowed in the crop. In practice, we found
τp ∈ [0.99, 1] to be a reasonable range of values. The values for
τp are in the upper range because the subjects of the user study
from Section 5 rated about 9/10 of all samples “good”, resulting
in relatively high pi’s everywhere. Figure 6 illustrates the effect of
varying τp. For all other results in this paper and in the supplemen-
tary materials we set τp = 0.9925, the setting that scored best in
the evaluation study described below and generally seems to work
well across a wide range of panoramas (please refer to the results in
the supplementary material). Figure 7 illustrates how our cropping
optimization behaves on panoramas that are predicted mostly high
or mostly low quality.

While the most commonly used shape is a rectangle, the formu-
lation above supports arbitrary parametric crop shapes. We have
experimented with various shapes including trapezoids, convex n-
gons, ellipses, T-shapes, and L-shapes. Figure 9 shows various re-
sults using general shapes.

To solve the constrained optimization problem in Eq. 6, we first
replace it with a sequence of unconstrained subproblems using
the logarithmic barrier method [Nocedal and Wright 2000]. In-
stead of solving Eq. 6, we solve the unconstrained combined ob-
jective/barrier problem

min
C

∣∣C ∩K∣∣− λ logµp(C). (7)

The minimizer of Eq. 7 approaches the solution of Eq. 6 as λ→ 0.
We use the Simplex algorithm [Nelder and Mead 1965] as imple-
mented in the GNU scientific library [Galassi et al. 2009] to solve
this problem. Since the objective function may contain local min-
ima, we approximate the global minimizer by starting the optimiza-
tion from 100 random initial states and use the best result.

6.1 Evaluation for Rectangles

We ran a user study involving 13 subjects (10 males and 3 females)
to evaluate our automatic cropping technique. Each subject was
shown 20 full panoramas randomly selected from a subset of 50
panoramas on a high-resolution 24” monitor. For each panorama,

Input and prediction (brighter is better) More aggressive crop, µp = 0.9975 Less aggressive crop, µp = 0.9925

Figure 6: The µp parameter controls the balance between our high level goals when cropping: a high setting (middle) avoids low-quality
areas but might crop more; a lower setting (right, our default setting) includes more of the known pixels at the expense of a potentially lower
completion quality.

Input and prediction
(brighter is higher quality)

Cropped followed by
image completion

Input and prediction
(brighter is higher quality)

Cropped followed by
image completion

Figure 7: An “easy” and a “hard” input image. For the left panorama our prediction function indicates most of the missing regions can
be completed well; our automatic crop is large. For the right input the prediction function indicates most of the missing regions can not be
completed well. Our automatic crop is more conservative and avoids most of these regions.

Figure 8: Left: Results of the user study comparing non-cropped
images (full), versus intelligently cropped (smart), versus no-
cropping (conservative) or over cropping (extracons). Users sig-
nificantly preferred smart cropping: χ2(3, 260) = 165.94, p <
0.0001%. Middle: Average Hausdorff distances to crops chosen by
the subjects of our user study. Our automatic crops are on average
closer to the user preferences than either full or conservative crop-
ping. Right: Average Hausdorff distances for linearly interpolated
crop boxes between “full” and “conservative,” and for cases where
the predicted quality of each missing pixel is set to a constant.

we generated 5 versions: the full uncropped completion, three au-
tocrops with µp = 0.9925, 0.9950, 0.9975, and a conservative crop
(i.e., maximum known region crop). We also added an overcropped
version that eliminated known pixels to help determine when sub-
jects were cropping based on framing judgements as opposed to no-
ticeable artifacts. For each set of panoramas, the original stitched
photographs were first shown to the subject and subjects could use
the left/right arrow keys to cycle through the differently cropped
panoramas. Subjects were asked to choose a panorama that they
would want to share with friends. Mechanical Turk was not used
because of the high-resolution requirement. Subjects finished on
average in 7.5 mins (standard deviation of 2.67 mins).

The results of the study showed that participants preferred some
form of guided cropping 52% of the time. They used the uncropped
version 35% and the conservative cropping only 11.5% of the time
(see Figure 8, left). This analysis shows only part of the picture;
depending on the prediction distribution, different crop choices may
appear to be very similar. Such examples are shown in Figure 7,
where our smart cropping is almost the same as the full image and
conservative crop, respectively. In such cases, arbitrary decisions
may be made, skewing the results.

To account for this issue, we performed another analysis that takes
into account the relative shape distances between different crops.
For each crop version selected by a user, we compute the symmetric
Hausdorff distance to all available crop choices (normalized by the
longer dimension of the image). The Hausdorff distance is a com-
monly used shape similarity metric, e.g., for template matching in
computer vision applications. The results of this analysis (blue bars
in Figure 8, middle) show that our guided crops have the smallest
average Hausdorff distances to the crops selected by the subjects.
This shows a clear preference for our guided crops over the full
image or conservatively cropped images. We also compare various
naı̈ve crops to the user choices (Figure 8, right). The results in red
show the average distances of crops achieved by interpolating the
crop shapes between the full and conservative versions. The results
in green were achieved using the same optimization as our results
(using τp = 0.9925), but using the same constant quality value for
every missing pixel. For both cases, the distances are significantly
higher (and hence less desirable) than for our best setting.

7 Additional Results

We tested our algorithm on several hundred panoramas and im-
ages with holes in the interior. In the supplementary material, we
show an extensive comparison to various state-of-the-art algorithms

Input and prediction (brighter is higher quality) Our result (automatic crop not shown here)

Adobe Photoshop CS5 (Content Aware Fill) Komodakis and Tziritas [2007]

Figure 10: Comparison with other image completion algorithms. Please zoom into the PDF to see details. Note the blurring problem in
the Photoshop and Komodakis and Tziritas’ results at the bottom corners. The results of both previous methods also contain incorrectly
synthesized texture at the bottom and semantic errors, i.e. snow patches in the sky. Many more examples can be found in the supplementary
material.

Input and prediction (brighter is higher quality)

Best (axis-aligned) rectangular crops

Best rotated rectangle Best isosceles trapezoid

Figure 9: Results of using alternative crop shapes. In both cases
a significantly higher portion of the known pixels is included in the
crop.

(Adobe Photoshop CS5 Content Aware Fill, GIMP Resynthesizer,
[Pritch et al. 2009], [Komodakis and Tziritas 2007], [Criminisi et al.
2003]) on 25 representative samples from each class. An exam-
ple is shown in Figure 10. In addition, we show automatic crop-
ping results for the 25 panoramas; representative results are shown
throughout the paper.

On a dual Intel Xeon E5640 PC, we observe the following median
timings for the 25 panoramas included in the supplementary mate-
rial. We believe these numbers can be reduced with code optimiza-
tion.

Full completion With auto-cropping
Restriction regions 0.32s 0.22s
Feature extraction not applicable 0.93s
Crop optimization not applicable 1.78s
Completion 13.29s 6.52s
Total 13.70s 9.17s

For these panoramas, our automatic crops contain on average
slightly less than 50% of the missing pixels. Since the completion
algorithm runtime is roughly linear in the number of missing pixels,
this leads to a significant speed-up compared to first completing the
full panoramas before cropping.

8 Limitations and Future Work

Image completion remains a very challenging problem. Like other
recent approaches, our algorithm lacks higher-level (object-level)
understanding of the input image. Thus, it will on occasion gener-
ate semantically implausible results, although our source location
restriction significantly reduces these problems. Our cropping opti-
mization currently ignores scene context and may crop out impor-
tant objects in the scene. As seen in Figure 12, it fails to realize the
importance of the two subjects. A possible solution is to use face
and/or saliency detectors.

Our prediction function fit is not perfect, most likely due to occa-
sional mismatches in subject ratings in the training database. As
a result, our prediction function would, on occasion, mislabel the
missing regions (e.g., Figure 11, where mislabeling resulted in a
smaller crop). A future course of action would be to either analyze
the function on a per-person basis (i.e., personalize the automatic
cropping function), or partition the data into clusters of similar pref-
erences, with each having a different cropping function.

Input and prediction
(brighter is higher quality)

Entire completion

Figure 11: Our prediction function sometimes tags “good” pixels
as “bad.” In this example, practically the entire missing region can
be completed well. As a result of the overly-conservative prediction,
the suggested crop is smaller than necessary.

Input and prediction
(brighter is higher quality)

Cropped completion

Figure 12: Example where our cropping fails to take into consid-
eration object-level importance.

References

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. B. 2009. Patchmatch: a randomized correspondence
algorithm for structural image editing. ACM Trans. on Graphics
(Proceedings of Siggraph) 28, 24:1–24:11.

BERTALMIO, M., SAPIRO, G., CASELLES, V., AND BALLESTER,
C. 2000. Image inpainting. ACM Trans. on Graphics (Proceed-
ings of Siggraph) 19.

BORNARD, R., LECAN, E., LABORELLI, L., AND CHENOT, J.-
H. 2002. Missing data correction in still images and image se-
quences. Proceedings of the tenth ACM international conference
on Multimedia, 355–361.

CRIMINISI, A., PEREZ, P., AND TOYAMA, K. 2003. Object re-
moval by exemplar-based inpainting. In CVPR, 417–424.

DARABI, S., SHECHTMAN, E., BARNES, C., GOLDMAN, D. B.,
AND SEN, P. 2012. Image melding: Combining inconsistent
images using patch-based synthesis. ACM Trans. on Graphics
(Proceedings of Siggraph) 31, 4.

DRORI, I., COHEN-OR, D., AND YESHURUN, H. 2003.
Fragment-based image completion. ACM Trans. on Graphics
(Proceedings of Siggraph) 22, 303–312.

EFROS, A., AND LEUNG, T. 1999. Texture synthesis by non-
parametric sampling. In CVPR, 1033–1038.

FELZENSZWALB, P., AND HUTTENLOCHER, D. 2004. Efficient
graph-based image segmentation. IJCV 59, 2, 167–181.

FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. 2000. Addi-
tive logistic regression: a statistical view of boosting. Annals of
Statistics 28, 2, 337–407.

GALASSI, M., DAVIES, J., THEILER, J., GOUGH, B., AND JUNG-
MAN, G. 2009. GNU Scientific Library – Reference Manual,
Third Edition. Network Theory Ltd.

JIA, J., AND TANG, C.-K. 2003. Image repairing: robust image
synthesis by adaptive nd tensor voting. Proc. CVPR 2003, 643–
650.

KAWAI, N., SATO, T., AND YOKOYA, N. 2008. Image inpainting
considering brightness change and spatial locality of textures and
its evaluation. In PSIVT ’09, 271–282.

KOMODAKIS, N., AND TZIRITAS, G. 2007. Image completion
using efficient belief propagation via priority scheduling and dy-
namic pruning. IEEE Trans. Image Processing 16, 2649–2661.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. ACM Trans.
on Graphics (Proceedings of Siggraph) 24, 795–802.

MANSFIELD, A., PRASAD, M., ROTHER, C., SHARP, T., KOHLI,
P., AND VAN GOOL, L. 2011. Transforming image completion.
In British Machine Vision Conf. (BMVC).

MATSUSHITA, Y., OFEK, E., GE, W., TANG, X., AND SHUM, H.-
Y. 2006. Full-frame video stabilization with motion inpainting.
IEEE Trans. Pattern Anal. Mach. Intell. 28, 7 (July), 1150–1163.

NELDER, J., AND MEAD, R. 1965. A simplex method for function
minimization. Computer Journal 7, 308–313.

NOCEDAL, J., AND WRIGHT, S. J. 2000. Numerical Optimization.
Springer.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2004. Patchworks:
example-based region tiling for image editing. Tech. Rep. MSR-
TR-2004-04, Microsoft Research.

PLATT, J. C. 1999. Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood methods. In
Advances in large margin classifiers, MIT Press, 61–74.

PRITCH, Y., KAV-VENAKI, E., AND PELEG, S. 2009. Shift-map
image editing. In ICCV’09, 151–158.

SIMAKOV, D., CASPI, Y., SHECHTMAN, E., AND IRANI, M.
2008. Summarizing visual data using bidirectional similarity.
In CVPR.

SUN, J., YUAN, L., JIA, J., AND SHUM, H.-Y. 2005. Image
completion with structure propagation. ACM Trans. on Graphics
(Proceedings of Siggraph) 24, 861–868.

SWAMY, D., CHANDLER, D., BUTLER, K., AND HEMAMI, S.
2011. Parametric quality assessment of synthesized textures.
Proc. Human Vision and Electronic Imaging 2011.

WEXLER, Y., SHECHTMAN, E., AND IRANI, M. 2007. Space-
time video completion. TPAMI.

YU, S., AND SHI, J. 2003. Multiclass spectral clustering. 313–319
vol.1.

ZHANG, M., ZHANG, L., SUN, Y., FENG, L., AND MA, W. 2005.
Auto cropping for digital photographs. In ICME.

